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Preface

Spread spectrum and CDMA (code division multiple access) are up-to-date technologies
widely used in operational radar, navigation and telecommunication systems and play-
ing a dominant role in the philosophy of the forthcoming generations of systems and
networks. The amount of interest and effort invested in this encouraging area by
research institutions and industry is gigantic and constantly growing, especially after
the prominent commercial success of CDMA mobile telephone IS-95 and the use of
CDMA as the basic platform of 3G (and beyond) mobile radio. No wonder that the
fundamentals of spread spectrum theory have assumed a solid place in the basic
university disciplines, while the detailed issues form the contents of numerous advanced
courses.

This book was conceived as a textbook for postgraduate and undergraduate students,
and is also expected to be useful in training industry personnel and in the daily work of
researchers. It is based on the experience and knowledge gained by the author during
more than three decades of research activity in the area, as well as on his lecture courses.
The original version of such a course started in the late 1970s at the Saint Petersburg
Electrotechnical University ‘LETI” and has since been continually developed and mod-
ernized, absorbing many state-of-the-art achievements and being presented to audiences
from Russia, the UK, Australia, China, Finland and other countries.

The intention of the author in preparing this book was to present the key ideas of
spread spectrum in the most general form equally applicable to both systems of collect-
ing and recovering information (such as radar and navigation) and telecommunication
systems or networks. The author’s second concern was to link the material as tightly as
possible to classical signal and communication theory, which gives Chapter 2 a special
role. The goal pursued everywhere was harmony between mathematical rigour and
physical transparency of some or other issue under discussion and the reader’s deep
understanding of the reasons underlying the preference for spread spectrum and
CDMA. The main question the author tried to answer in considering this or that
problem was “‘Why?—i.e. why a designer may or should prefer one solution over others.

A particular emphasis of the book is designing spread spectrum signals. Many
popular books, although deservedly reputable, do not go into this problem beyond
presenting a brief survey of m-sequences and Gold codes. A reader may thereby get
a false idea that nothing valuable exists outside this narrow range of attractive signal
families. In Chapters 6 and 7 we try to show that the designer’s freedom and the



xii Preface

multitude of alternatives are much broader and comprise many solutions potentially
competitive or clearly superior to those mentioned above.

In no way is this book intended to be looked upon as a manual introducing concrete
operational or projected systems and standards. However, some such systems give a rich
soil to illustrate the theory and for this reason are frequently mentioned in the text as
examples of practical realization of spread spectrum principles. Another aid for better
adoption of the contents is offered by the problems at the end of every theoretical
chapter. Especially recommended are the Matlab-based problems, since their running
involves and develops investigatory skills and allows execution of an extensive experi-
mental study.

The book is supported by the companion website on which instructors and lecturers
can find a solutions manual for the problems and matlab programming within the book,
electronic versions of some of the figures and other useful resources such as a list
of abbreviations etc. Please go to ftp://ftp.wiley.co.uk/pub/books/ipatov. If you have
any comments regarding the book please feel free to contact the author directly at
valery.ipatov@utu.fi.

The author is sceptical enough to realize that no book—including this one—can be
totally free of shortcomings. In our case the difficulties were greatly intensified by the
necessity of writing in a non-mother tongue. Nevertheless, the author is entirely respon-
sible for all of the statements as well as the drawbacks of the book and is ready to accept
any constructive remarks or criticism.

I would like to express my sincere gratitude to the Department of Information
Technology of the University of Turku for the friendly and creative atmosphere during
my work in Finland. I address my special appreciation to Professor Jouni Isoaho and
Dr Esa Tjukanoff for their daily support and cooperation.

Many thanks to my colleagues Dr Nastooh Avessta and Dr Igor Samoilov, who
kindly and carefully read the manuscript and, by way of innumerable discussions,
helped in my endeavour to streamline it. The assistance of Jarkko Paavola and Alexey
Dudkov in rectifying and debugging the manuscript can hardly be overestimated, too.

This is a good opportunity to emphasize my deepest gratitude to my dear teachers
Professor Yu. A. Kolomensky, Professor Yu. M. Kazarinov and Professor
Yu. D. Ulianitsky, who introduced me to the fascinating world of signals and noise,
and were for decades my advisors in many professional as well as personal matters.

Warmest thanks to all my colleagues at the Department of Radio Systems of Saint
Petersburg State Electrotechnical University ‘LETI’ for a long-standing collaboration.

I bring my gratitude also to Sarah Hinton and her colleagues at John Wiley &
Sons, Ltd for initiating this project and inspiring me in the course of writing, and my
special thanks to the Nokia Foundation for the grant awarded to me at the final stage of
preparing the manuscript.

And finally I cannot help mentioning my wife’s patience and care during the year of
my working on this book.

Valery P. Ipatov



1

Spread spectrum signals and
systems

1.1 Basic definition

The term spread spectrum is today one of the most popular in the radio engineering
and communication community. At the same time, it may appear difficult to formulate
an unequivocal and precise definition distinctively separating the spread spectrum
philosophy from a ‘non-spread spectrum’ one. Certainly, every expert in system design
and every experienced researcher has an intuitive understanding of the core of the issue,
but—unlike a newcomer—such a person does not need to think about definitions in
order to respond successfully to his or her professional challenges. From the point of
view of the target audience of the book it seems worthwhile to dedicate some space to
elaborating an appropriate explanation of what is implied in the following text under the
spread spectrum concept.

Let us start with a reminder of the basics of spectral analysis. Every signal s(¢) of finite
energy can be synthesized as a sum of an uncountable number of harmonics whose
amplitudes and phases within the infinitesimal frequency range [f,f -+ df] are
determined by a spectral density or spectrum §(f). It is the pair of inverse and direct
Fourier transforms that expresses this fact mathematically:

(1) = / S(f)expG2nfydf  §(f) = / (1) exp(—j2fr) dr (L1)

Due to the one-to-one correspondence between the signal representation in the time
domain s(¢) and in the frequency domain 5(f), we are able to switch arbitrarily between
these two tools, selecting the more convenient one for any specific task. To characterize
the size of the zones occupied by signal energy in the time and frequency domains we use
the notions of signal duration 7"and bandwidth W, respectively. A signal whose energy

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
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2 Spread Spectrum and CDMA

is concentrated within strictly limited space in the time domain cannot have finite
(i.e. non-zero in only limited frequency interval) spectrum and vice versa. Because of
this, to define at least one of the parameters T, W, or both, some agreement is necessary
about what is meant by duration or bandwidth. In this way effective, root mean square,
etc. duration and bandwidth came into existence, showing the size of a zone spanned by
a substantial part of signal energy in the time and frequency domains, respectively [1].

It is absolutely obvious that one way or another, the word ‘spread’ is indicative of
wide spectrum, i.e. broad bandwidth W of a signal. But against what is the spectrum
wide? Where is the reference for comparison? To demonstrate how a definition of spread
spectrum may provoke debate, let us consult with several excellent and world-renowned
books.

A rather frequent way to explain the concept consists in the statement that a system or
a signal is of spread spectrum type if its bandwidth significantly exceeds the minimum
bandwidth necessary to send the information [1-6]. What may seem mentally problematic
in this definition is the very idea of minimum bandwidth of information or message.
According to the fundamental Shannon’s bound, spectral efficiency (the ratio between
the data rate R and the signal bandwidth W) of a communication system operating
over the Gaussian channel obeys the inequality:

R<lo 1+EbR orEb>2%_l
w =R TNew) TN T TR

(1.2)

where FEj, is signal energy per bit of information and N is the one-side power spectral
density of a Gaussian noise. Figure 1.1 represents bound (1.2) graphically, showing that
any combinations of R/W and Ej/N, falling below the curve are possible, at least in
principle. But this means that the theoretical ‘minimum bandwidth necessary to send the
information’ is zero and therefore any real system—which, of course, occupies some

107
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Figure 1.1 Shannon’s bound



Spread spectrum signals and systems 3

non-zero bandwidth—should be treated as a spread spectrum one! Undeniably, any
attempt to use near-zero data transmission bandwidth would be rather demanding for
signal energy. For one thing, to operate with R = 100/ one would need to provide bit
signal-to-noise ratio Ep/Ny around 280dB, which is quite unrealistic. However, data
transmission within bandwidth, for instance, up to ten times smaller than data rate is
quite typical and is practised in many digital communication links (radio-relay lines,
modem communications etc.). This shows the vagueness of the very idea of the ‘minimal
bandwidth’ and the arguable character of taking it as a starting point for explaining the
notion of spread spectrum.

As an attempt to eliminate ambiguity we can try to use rate of data in bits per second
as a substitute for the above-mentioned minimal necessary bandwidth [7,8]. It is not very
logical, however, that one of many possible and, in principle, equal in rights units of
measurement of data rate is rendered some conceptually prominent role. Besides,
defining spread spectrum in terms of bandwidth significantly exceeding data rate in
bits per second is risky of comprising systems which are in no way of spread-spectrum
type. Take, for example, the uplink between a single user and a base station in a GSM
mobile telephone. With the rate of primary digitized speech data of 9.6 kbits/s, the user’s
signal has bandwidth around 200 kHz, which may mislead someone to classify GSM as
a spread spectrum system. However, no genuine features of spread spectrum are
involved in the band broadening in the GSM uplink: the only reason why bandwidth
exceeds the data rate is time-division multiple access (TDMA) forcing operation with
much shorter transmitted symbols in comparison with the actual average time interval
per information bit.

There is still one more reason to look for alternative definitions. Even ignoring the
troubles discussed earlier, linking a definition to data rate or ‘message bandwidth’ can
serve only data transmission systems, whereas spread spectrum is widely employed in
many others, like radar, sonar, navigation or remote control for time and distance
measuring, signal resolution etc. Actually, these systems were among the first to adopt
the advantages of the technology under discussion. In those applications such categories
as ‘information rate’ or ‘data bandwidth’ are hardly meaningful or, at least, have nothing
to do with the aims of spreading spectrum. In the wake of the endeavour to define ideas
of spread spectrum in some universal way, matching not only communication aspects
but the needs of other application areas as well, the following definition of spread
spectrum seems more relevant.

Let us turn to the Gabor uncertainty principle, according to which the product of
signal duration and bandwidth (time—frequency product) satisfies inequality WT > a,
where constant @ depends on the exact way in which duration and bandwidth are
specified; however, it is always of the order of 1. A signal for which W7 =~ 1, and
therefore duration and bandwidth are tightly linked to each other can be called plain
(non-spread spectrum). The only way to widen the bandwidth of a plain signal is to
reduce its duration, i.e. to shorten it. On the other hand, a deterministic signal for which
WT > 1 and bandwidth can be governed independently of duration is a spread spec-
trum one. Putting it in other words, we may say that any spread spectrum signal
occupies a rectangle in the time—frequency plane whose square is much greater than 1.
This definition automatically defines a spread spectrum system, too: a system employing
spread spectrum signals is a spread spectrum system.



4 Spread Spectrum and CDMA

Note that in this definition the independence of duration and bandwidth is particularly
emphasized, meaning that one can broaden the bandwidth (duration) without shortening
the signal in time (frequency). This has a further implication for the critical role of angle
(phase or frequency) modulation in all spread spectrum technology. Indeed, how can
amplitude modulation help in widening the spectrum? The answer is: only by reducing the
area over which signal energy is effectively spread in the time domain, i.e. by actually
reducing the effective signal duration. It is only angle modulation that is capable of
widening the signal spectrum with no influence on the time-distribution of signal energy.

As an illustration, Figure 1.2 gives the example of two rectangular pulses having
the same duration T and carrier frequency fy: (a) a signal with no internal modulation
and (b) a linearly frequency-modulated (LFM) signal with deviation W,;=20/T. The
lower curves show the spectra of these signals. As is seen for signal (a), bandwidth W
has the order W =~ 1/T, meaning that the signal energy spans in the frequency domain an
interval approximately equal to inverse pulse duration. Thereby, duration and band-
width are strictly tied, the time—frequency product is fixed and widening the spectrum
can be achieved only in exchange for pulse shortening. At the same time the bandwidth
of pulse (b) is close to frequency deviation (W =~ W,) and much greater than the inverse
duration. As a result bandwidth can be easily controlled independently of signal dura-
tion by just varying the deviation. Accordingly, we classify the first signal as plain and
the second as of spread spectrum type.

1.0 1.0
0.5 0.5
s(r) 0.0 s 0.0 L
05 -0.5
-1.0 -1.0
0 02 04 06 08 1.0 12 14 0O 02 04 06 08 10 12 14
t t
1000 1000
800 q 800
600 1 600
£ [
400 1 400
200 4 200 MM
0 . 0 . : *
0 10 20 30 40 0 10 20 30 40
/T T
(a) (b)

Figure 1.2 Unmodulated (a) and frequency modulated (b) rectangular pulses and their spectra
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The definition given is in fact the one which has been widely and long since adopted in
the systems of radar-akin philosophy, but it is also consistent with data communication
problems. That is why we will rely on it in the following text.

1.2 Historical sketch

The history of spread spectrum covers over six decades and may serve as a topic of
separate study. The reader interested in learning the chronology of the key events can
address in-depth (albeit focused almost totally on US developments) surveys in [9,10].
Here we limit ourselves to only a very brief mention of the main historical landmarks.

Probably the first patent on the radar, which in modern terminology may be without
doubt treated as spread spectrum, was obtained by G. Guanella in 1938. During and
after World War II, intensive research in radar spread spectrum systems had been
undertaken in Germany, the USA, the UK and the USSR. In parallel with technological
and technical advancements, numerous solid theoretical investigations had been con-
ducted into the precision and signal resolution of radar. The most influential and deep
results in this regard were published by P. M. Woodward in his 1953 book. It should be
noted in passing that many of these results were explainable based on fundamental
works by C. Shannon and V. A. Kotelnikov between 1946 and 1948, the role of which
thereby goes far beyond only ‘pure’ data communication applications.

Certainly, for a long time a great deal of information on new practical developments
in spread spectrum radar and navigation was classified, because military and intelligence
services supervised the great majority of projects. However, many ideas were getting
widely known as soon as they were realized in systems of mass-scale usage. A good
example of this is the world-wide navigation system Loran-C deployed in the early 1960s
in which ground-based longwave radio beacons transmitted ‘genuine’ spread spectrum
(PSK) signals having time—frequency product WT =16. To imagine how viable
this system appeared to be, it is enough to stress that with continual modernization
and numerous improvements it has managed to remain in operation to see the third
millennium.

Another giant step in the practical implementation of the spread spectrum concept in
time—distance measuring systems was taken with the creation of the 2G space-based
global navigation networks GPS (USA) and GLONASS (USSR/Russia) in the 1980s
and early 1990s. Signals with very large time—frequency products, measured in the
thousands, are at the heart of these systems, which today constitute an integral part of
human civilization as satellite television and mobile radio.

The earliest works in spread spectrum applications to data transmission were
primarily aimed at speech masking and communication protection. They started again
before World War II in Germany and were soon taken up in the USA, the USSR and
elsewhere. An intriguing action of the novel The First Circle by Alexander Solzhenitsyn
unfolds in the special Soviet jail where convicted scholars and engineers are collected
together to elaborate the noise-masked speech transmission system.

Among the turning points in spread spectrum communication, the RAKE algorithm
proposed by R. Price and P. Green (1957) should be pointed to, which marked the
beginning of the direction later called multipath diversity. Works in the 1960s by
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S. Golomb, N. Zierler, R. Gold, T. Kasami and others in the field of discrete sequences
with special correlation properties played a crucial role in the formation of spread
spectrum technology and numerous practical achievements.

The commercial spread spectrum era started around the late 1970s, at the time when
the mobile telephone began its triumphant conquest of the world. The first proposals for
CDMA cellular networks in the USA and Europe (1978-1980) yielded to alternative
projects, which later evolved into the GSM and DAMPS standards. However, in the
mid 1990s the 2G standard IS-95 was put forward, resting on a fully spread spectrum/
CDMA platform. At a cosmic pace, networks of this standard (later named cdmaOne)
gained wide recognition in America, Asia and the former Soviet Union countries. The
great success of IS-95, as well as careful analysis and further experiments, had led to
acceptance of the spread spectrum/CDMA philosophy as the basic platform for the
major 3G mobile radio specifications: UMTS and cdma2000. Both of them are now in
the pre-operational stage and undoubtedly will become the main mobile communication
instruments for the next decades.

To conclude this introductory chapter, there are a few words about the development
of spread spectrum technology in the Soviet Union and later in Russia. Surveys
published in the West usually report only a little on Soviet research in this area. There
are a number of objective reasons for this, characteristic of the cold war period: the
country’s self-isolation, strict limits on the contacts of Soviet specialists with their
foreign colleagues and publications abroad, excessive and often needless secrecy etc.
The language barrier has also been a serious impediment. But as a matter of fact, Soviet
advancement in the spread spectrum field between the 1950s and the 1990s was very
up-to-date and quite competitive with developments in the USA and Europe. Works by
D. E. Vackman, Ya. D. Shirman, M. B. Sverdlick (spread spectrum radar signal design
and processing), I. N. Amiantov and L. E. Varakin (spread spectrum communications)
were pioneering in many respects and recruited generations of young professionals into
this attractive and absorbing research area.
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Classical reception problems
and signal design

It is typical of communication theory to start analysing a system from the receiving end.
The aim is usually to design an optimal receiver, which retrieves the information
contained in the observed waveform with the best possible quality. Knowing optimal
reception processing algorithms depending on a specific transmitted signal structure, it is
possible afterwards to design an optimal transmitted signal, i.e. to choose the best means
of encoding and modulation. In this chapter we investigate how classical reception
problems appeal to the spread spectrum, or, in other words, which of the classical
reception problems demand (or not) the involvement of spread spectrum signals. We
call reception problems ‘classical’ if they are based on the traditional Gaussian channel
model.

2.1 Gaussian channel, general reception problem and optimal decision rules

The following abstract model can describe any information system in which data is
transmitted from one point in space to another. There is some source that can generate
one of M possible messages. This source may be governed or at least created by some
human being, but it may also have a human-independent nature. In any case, each of the
M competitive messages is carried by a specific signal so that there is a set S of M
possible signals: S = {sx(t): k= 1,2,..., M}. There is no limitation in principle on the
cardinality of S, i.e. the number of signals M, and, if necessary, the set S may even be
assumed uncountable. The source selects some specific signal s;(z) € S and applies it to
the channel input (see Figure 2.1). At the receiving side (channel output) the observation
waveform y(7) is received, which is not an accurate copy of the sent signal s;(¢) but,
instead, is the result of s;(¢) being corrupted by noise and interference intrinsic to any
real channel. For the receiver there are M competitive hypotheses H; on which one of M
possible signals was actually transmitted and turned by the channel into this specific
observation y(f), and only one of these hypotheses should be chosen as true. Denote the

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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;1) y(@)

— | Channel —

Figure 2.1 General system model

result of this choice, i.e. the decision, as H,-, read as ‘the decision is made in favour of
signal number ;°. With this the classical reception problem emerges: what is the best
strategy to decide which one of the possible messages (or signals) was sent, based on the
observation y(t)?

To answer this question it is necessary to know the channel model. The channel is
mathematically described by its transition probability p[y(¢)|s(f)], which shows how
probable it is for the given input signal to be transformed by the channel into one or
another output observation y(f). When the transition probability p[y(¢)|s(?)] is known for
all possible pairs s(¢) and y(¢), the channel is characterized exhaustively.

When all source messages are equiprobable (which is typically the case in a properly
designed system) the optimum observer’s strategy, securing minimum risk of mistaking
an actually sent signal for some other, is the maximum likelihood (ML) rule. According
to this rule, after the waveform y(¢) is observed the decision should be made in favour of
the signal which has the greatest (as compared to the rest of the signals) probability of
being transformed by the channel into this very observation y(z).

The primary channel model in communication theory is the additive white Gaussian
noise (AWGN) or, more simply, the Gaussian channel in which the transition probability
drops exponentially with the growth of the squared Euclidean distance between a sent
signal and output observation:

Ply(Dls(0)] = kexp (—Nlod%s, y>) @.1)

where k is a constant independent of s(r) and y(f), Ny is white noise one-side power
spectral density, and the Euclidean distance from s(z) to y(¢) is defined as:

d(s,y) = / (1) — s(0)ds (22)
0

Explanation of the particular importance of the Gaussian model lies in the physical
origin of many real noises. According to the central limit theorem of probability
theory, the probability distribution of a sum of a great number of elementary random
components, which are neither strongly dependent on each other nor prevailing over the
others, approaches the Gaussian law whenever the number of addends goes to infinity.
But thermal noise and many other types of noise, typical of real channels, are produced
precisely as the result of summation of a great many elementary random currents or
voltages caused by chaotic motion of charged particles (electrons, ions etc.).

When talking about the distance between signals or waveforms, we interpret them
as vectors, which is universally accepted in all information-related disciplines. If the
reader finds it difficult to imagine the association between signals and vectors, a very
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simple mental trick may be a useful aid. Imagine discretization of a continuous signal in
time, i.e. representing s(¢) by samples s; = s(iTs), i =0, 1,..., taken with a sampling
period T,. If the total signal energy is concentrated within the bandwidth W and
T, < 1/2W (ignoring that theoretically no signal is finite in both the time and the
frequency domains), samples s; represent exhaustively the original continuous-time
signal s(¢). With signal duration T there are n = T/T, such samples altogether, and
therefore the n-dimensional vector s = (s, si,...,S,_1) describes the signal entirely.
Having done the same with observation y(z), we come to its n-dimensional vector
equivalent y = (yo, y1, - - ., Vn—1) and find the Euclidean distance between vectors s and y
by Pythagorean theorem for the n-dimensional vector space:

One possible way of finishing the game is letting 7 go to zero. Then vectors s, Y,
remaining signal and observation equivalents, become of infinite dimension (actually
repeat s(¢), y(t) since there is no longer any discretization in the limit). At the same time,
the sum above (ignoring the cofactor) turns into the integral in the right-hand side of
equality (2.2). The latter, thereby, is the definition of Euclidean distance for continuous
time waveforms.

Now come back to the ML rule for the Gaussian channel. According to equations
(2.1) and (2.2), signal likelihood (the probability of being transformed by the channel
into the observed y(¢)) falls with Euclidean distance between s(¢) and y(¢). Therefore, the
ML decision in the Gaussian channel can be restated as the minimum distance rule:

d(s;,y) = m]m d(si,y) = H; is taken (2.3)

i.e. the decision is made in favour of signal s;(¢) if it is closest (in terms of Euclidean
distance) to observation y(f) among all M competitive signals (Figure 2.2). Another,
more direct, notation of (2.3) is:

§ = argmind(s,y)
seS

where § is an estimation of the received signal (i.e. the signal declared received).

s
S 2

o Si
¥ d(s;, y) =min d(s;, y)
Sy k

Figure 2.2 Illustration of minimum distance rule
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Continuing the geometrical interpretation of signals, we can introduce signal
geometric length (norm) ||s|| as its distance from the origin. Then from (2.2) it follows

that ||s|| = d(s, 0) = VE, where:
T
E:/sz(t)dt (2.4)
0

is signal energy. Another important geometrical characteristic is the inner (scalar)
product (u, v) of two signals u(t), v(?):

(u,v) = / u(t)v(f)dt (2.5)

which again can be thought of as a limit form of an inner product of two n-dimensional
vectors. The same entity may also be calculated through the lengths of the vectors and
the cosine of the angle « between them: (u, v) = ||ul|||v|| cos a, and thus the inner product
describes the closeness or resemblance between signals, since the closer the signals are to
each other, with lengths (energies) fixed, the closer to one is cos « and the greater is the
inner product. Because of this the inner product is also called the correlation of signals.

In order to outline the special role of this entity, let us now give a slightly different
version of the minimum distance rule. Opening the brackets in (2.2) leads to:

T T T

s/(, /y2 Z/y se(t dt—|—/s f)dt = ||yH —2z; + ||sk|| (2.6)

0 0 0
where z; stands for correlation of observation y(z) with kth signal s;(7):

T

ya Sk /y S/x (27)

0

The first summand in the right-hand side of equation (2.6) is fixed for a given observation,
and therefore does not affect comparing distances and the decision on which signal
is received. The last term is just the kth signal energy Ej. With this in mind, distance rule
(2.3) can be reformulated as the following correlation decision rule:

E; Ej
zj — 7’ = max (zk — 7) = H is taken (2.8)

meaning, in particular, that it is maximally correlated with observation y(#) signal,
which is announced as having actually been received among all M competitive signals
of equal energies. The last case is very well explainable physically: preference is simply
given to the signal which has stronger resemblance to y(¢) than all the rest, correlation
(inner product) being accepted as a criterion of resemblance.
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Figure 2.3 Observation scattering and signal design problem

It is interesting to note in passing that these deliberations, although very preliminary,
already give a rather clear idea of good signal set design. Look at Figure 2.3, where the
signal vectors are depicted. Suppose signal s; is transmitted and corrupted by the
AWGN channel, which adds to s; noise vector n. A Gaussian vector n has symmetrical
(spherical) probability distribution dropping exponentially with the length of the vector n,
which is readily seen from (2.1) after removing the signal from it (substituting s(¢) = 0).
Hence, observation vector y = s; + n proves to be scattered around s;, as is shown by
the figure, and, according to the minimum distance rule (2.3), as soon as y comes closer
to some other signal than to s; a wrong decision will happen. To minimize the risk of
such an error we should have all the other signals as distant from s; as possible.
Because any one of M signals may be transmitted equiprobably, i.e. be in place of s,
it is clear that all distances d(sg,s;), 1 < k <[ < M should be as large as possible. When
M is large enough it is not a simple task to maximize all the distances simultaneously,
since they can conflict with each other: moving one vector from another may make the
first closer to a third one. Due to this, the problem of designing a maximally distant
signal set (entering a wide class of so-called packing problems) is in many cases rather
complicated and has found no general solution so far.

Note that in what preceded all M signals were by default treated as fully deterministic,
i.e. all their parameters are assumed to be known a priori at the receiving end, the
observer being unaware only of which of the competitive M signals is received. This
model is adequate to many situations in baseband or coherent bandpass signal reception.
However, the general thread, with some adjustments, also retains its validity in more
complicated scenarios, such as noncoherent reception (Section 2.5).

Having refreshed these basic ideas of optimal reception, we are now ready to get down
to specific problems, putting particular emphasis on aspects of signal design and
analysing the potential advantages of spread spectrum—or their absence—in various
classical reception scenarios.

2.2 Binary data transmission (deterministic signals)

To demonstrate the strong dependence of reception quality on the distances between
signals, let us start with the simplest but very typical communication problem of binary
data transmission, where one of only M = 2 competitive messages is sent over the
channel. Practically, this may correspond to the transmission of one data bit in a system



12 Spread Spectrum and CDMA

where no channel coding is used, or one symbol of binary code in a system with error-
correcting code and hard decisions, etc. Numbering the messages 0 and 1 and assuming
that signals so(f) and s;(¢) (again deterministic!) are used for their transmission, we can
represent the minimum distance decision rule (2.3) as:

Hy
d(507 Y) ;d(sl ) y) (29)
H
where placement of the decision symbols points directly to when one or the other of two

decisions is made. The same can be rewritten in correlation-based form following from
rule (2.8):

ﬁ() —
i Ey — E,

St (2.10)

Z=Zy— 21
H,

with correlations zx, k = 0,1 of each signal and observation y(¢) defined by equation
(2.7) and E; = ||s;<||2,k =0, 1, being the kth signal energy given by (2.4). Optimal rules
(2.9) and (2.10) of distinguishing between two signals can be explained geometrically in a
very clear way. Two signal vectors sy and s; always lie in a signal plane SP. Observation
vector y does not necessarily fall onto this plane but the closeness of it to one or the
other signal is determined by the closeness to them of the projection y' of y onto
SP (see Figure 2.4a). Therefore, we can divide SP into two half-planes by the straight-
line bound passing strictly perpendicular to the straight line connecting the signal vectors,
and base decisions Hy, H, on y’ hitting the corresponding half-plane (Figure 2.4b). It is
also seen from Figure 2.4b that the probability of mistaking one signal for the other
(error probability) depends on the distance between vectors sy and s; in comparison with
the range of random fluctuations of y’ caused by channel noise. According to (2.10), the
actually received signal so(¢) will be erroneously taken for the wrong one s;(¢) if and only
if the correlation difference is lower than the threshold (Ey — E)/2. Therefore, the
probability pg; of such an error is found as:

Ey-Ej
E,— E [
Pol :Pr<z< 0 : ]|so(l)) = / W (zso(1)) dz (2.11)
: y ['51
! SP 't .
s / &
“lgi Zl/zz/_/zz/_/
}
y .
H()

(@) (b)

Figure 2.4 Signal plane and decision half-planes
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where Pr(A4|B) stands for the conditional probability of event 4 given that event B
occurred, and W(z|so(?)) is the conditional probability density function (PDF) of correl-
ation difference z in (2.10), given that the signal s¢(¢) is actually received. One of the
remarkable features of the Gaussian process is that any linear transform of it again
produces a Gaussian process. Therefore z, as a result of a linear transform of the
Gaussian observation y(¢) (see (2.7) and (2.10)), has the Gaussian PDF:

1 (z—2)*
w 1)) = -
(2l (1) Tmexp[ - ]
integration of which according to (2.11) results in:

2Z—E0+E1> (2.12)

P01Q< 20

where

is the complementary error function.

The expectation of Z conditioned in the received signal (the bar above will be used
from now on to symbolize expectation) and variance o> = var{z} of z can be found
directly from equations (2.7) and (2.10). When the signal s¢(¢) is assumed true, i.e.
(1) = s0(1), expectation of z:

T
o / SOls0(1) — 1 (0] dt = Eo — poy/EoE, (2.13)
0
where:
(ses) 1|
= Sed) se(D)s )
= o = / )5 (ds .14

is called the correlation coefficient of the signals s;(¢), s/(t), Ey, E; being their energies. As
is seen, geometrically pg; is simply the cosine of the angle between the signals sy(?), s1(?)
(or the signal vectors sy, s;), and hence characterizes closeness or resemblance of the
signals.

To find o = var{z} we rely on the fact that it is not affected by a deterministic
component of the observation y(¢), i.e. in the situation in question the signal sy(7), since
the noise is additive. Therefore we can virtually remove the signal from y(z), putting
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»(t) = n(t), where n(r) is white noise with two-sided power spectral density Ny/2.
After this let us calculate the variance of correlation (2.7) of y(¢) and some arbitrary
signal s(1):

T

7 = var{z} = /n(l)s(l)dt zz/T/Tn (¢)drdr’
0 0

0

where the squared integral is presented as a double integral with separable variables,
order of integration and averaging is changed (expectation of sum is sum of expect-
ations!) and, finally, averaging is applied to the only random cofactor in the integrand.

Recall now, that due to uniformity of the spectrum of white noise over the entire
frequency range, its autocorrelation function (statistical average of product of samples
at two time moments) is the Dirac delta function: n(f)n(¢') = (Ny/2)6(¢t — ¢'). In other
words, any two samples of white noise, notwithstanding how close in time, are uncorrel-
ated. Using this result in the integral above along with the sifting property of the delta

function:
T
/s o(f — 1)di = s(1)
0

leads to:
Ny ; E
ot =— = 2.15
Y [ 20 @15
0

where E is the energy of the signal s(¢).

In the case under consideration, as (2.10) and (2.7) show, substitution s(f) = so(¢) — s1(¢)
should be made in (2.15), i.e. E is energy E,; of the signal difference sy(¢) — s1(¢). Deriving
it gives:

T
/ — S1 dl dz(S(),Sl) =FEy+ E| — 2po1V EoE) (2]6)
0

Taking into account the geometrical content of the correlation coefficient and energy,
this is just the cosine theorem from ‘school’” mathematics.
Now, substitute (2.13), (2.15) and (2.16) into (2.12), arriving at:

d2(So, Sl)

= 2.17
po1 =0 2N (2.17)

Since the problem is absolutely symmetrical, the same result will be obtained for the
probability of mistaking s;(¢) for so(z). With this in mind, the complete (unconditional)
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error probability P, does not depend on a priori probability w of sending the signal so()
and is expressed by the equation:

d*(so,s1)

o (2.18)

P.=wpor + (1 —w)pio=0

It is quite obvious now that the only way to achieve high data transmission fidelity is to
make the distance between the two signals d(s, s;) large enough. Certainly, d(sg, s;) can
be increased at the cost of large signal energies or vector lengths, as is seen from (2.16).
But what is the optimal signal pair when recourse to this ‘brute force’ approach is limited,
i.e. signal energies are fixed beforehand? Consider first the very typical case of signals of
equal energies: Ey = E| = E, meaning that signal intensity is not utilized as a message
indicator. Decision rule (2.10) is now reduced to just comparison between zy and z| or,
equivalently, to testing the polarity of their difference:

Hy
z=12z9—21-0
<

H

Of course, to maximize the distance between two vectors of fixed lengths, one should
make them antipodal, as shown in Figure 2.5a. Then the angle between sy,s; o = 7,
cosa = py; = —1 and d(sg,s;) = 2\/E, which turns (2.18) into the following:

Pea= QQ/%) (2.19)

representing the minimal achievable error probability in binary data transmission,
signal energy E being fixed. The correlator and matched filter, which will often be
referred to in this book, are devices typically used to physically calculate correlation z,
and parameter ¢ = \/2E/Nj is nothing but signal-to-noise ratio (SNR) at the correlator
or matched filter output.

S

== = — — |

1]
=]

S;=-S, S|

() (b) (©)

Figure 2.5 Signal pairs in various binary transmission modes
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The optimal signal pair is therefore the antipodal pair sy(f) = —sy(¢). Binary phase
shift keying (BPSK) is the implementation that is widespread in digital data transmission
systems, in which 0 is transmitted by some bandpass signal with phase zero while the
same signal but with phase 7 serves to transmit message 1.

To find out how critical adequate choice of signals may prove to be, compare BPSK
with another popular binary transmission mode. Although BPSK is the best possible
method of binary signalling, it is based on a phase discrepancy of two signals carrying
data, and thus requires accurate knowledge of the frequency carrier current phase at the
receiver end. To realize it, a special frequency recovery loop should be used in the
receiver, which is sometimes regarded as an undesirable complication. One way to avoid
it is to employ frequency shift keying (FSK), in which messages 0 and 1 are carried by
signals of different frequencies. Typically frequencies are chosen so that the signals are
orthogonal: cosa = py; =0, d(sg,s1) = V2E (see Figure 2.5b). Substitution of it into

(2.18) gives:
Pe,o = Q(\/NEO) (220)

Comparing this result with (2.19), one can see that for an orthogonal pair (FSK) twice
the signal energy is needed to provide the same error reception fidelity as is secured by
the antipodal signals (BPSK). To put it another way, the orthogonal signals rank 3dB
worse than the antipodal ones in necessary energy.

There is one more very old mode of binary transmission still in use: amplitude shift
keying (ASK), in which the bit ‘1’ is transmitted by the signal s,(7) = s(¢) of energy
E, = E, and ‘0’ is transmitted by a pause: sy(¢) = 0, Ey = 0. In this case (see Figure 2.5¢)
d(so,s1) = V'E and the error probability (2.18) becomes:

Poas = Q (ﬁ) (2.21)

Comparing the last result with (2.19), one may conclude that ASK requires four times
(6 dB) higher energy than BPSK for the same reception quality. This is true when peak
energy is a limiting issue. More practical is usually the limitation on average energy.
Since in ASK no energy is spent at all when ‘0’ is transmitted, for equiprobable messages
0 and 1 the average energy is (Ey + E|)/2 = E/2. Thus, average energy only two times
higher than BPSK will give the same error probability with the ASK mode, and loss of
ASK to BPSK is the same as in the case of FSK, i.e. 3dB.

Now we have to make a final remark on the potential impact of the binary data
transmission problem upon signal pair design. We should conclude that there is no hint
of any special benefits of spread spectrum in this case, since widening signal bandwidth
versus its minimum 1/7 promises no improvements in error probability. Indeed, to
provide the necessary reception quality it is enough to have two maximally distant
signals, which automatically involves two antipodal signals with no additional demand
as to their shape or modulation. If for some reason an antipodal pair is rejected,
orthogonal (say, frequency shifted) or ASK pairs can be used and, again, this in no
way calls for the use of spread spectrum.
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2.3 M-ary data transmission: deterministic signals

In the case of M > 2, the probability p; , of mistaking the actually received signal s;(7)
for one of M — 1 wrong signals s,(¢),/ = 2,3, ..., M in accordance with rules (2.3) and
(2.8) is:

pie.=Pr (d2(51 ,Y) # mkin d* (s, y)|s1 (t)) =1-Pr <21 — % = max (zk — l;’“) |51 (t))
Accurate evaluation of this probability consists in integration of the conditional joint
PDF of all M correlations given that s1(z) is received over the whole area, where
z1 >z — (Ex — Ey)/2 for all k=1,2,..., M. This M-fold integral in the general case,
i.e. with no special assumption about signal set properties, can not be simplified in any
way. However, a very productive and straightforward upper border for p; . can be
derived using the union bound. Let the event 4; mean that observation y(¢) is closer to
some wrong signal s;(f) with a specific number / from the range [2, M] than to s;(¢). Then
the confusion of s(f) with some other signal will obviously be a union of all A4;. Let us
recollect now that according to the union bound, the probability of a union of events is
never greater than the sum of their probabilities:

M
Pre=Pr(4;UA3U...UAy) <> Pr(4))
1=2

On the other hand, Pr(4;), following definition of A;, is exactly the probability of
confusion between only two signals, s;(¢) and s;(¢). This probability is determined by
(2.17) after a proper change of the signal numbers:

d*(sy,s
PI'(A[):pll:Q 27];01)

Substituting this into the previous inequality leads to the desired estimate:

M

d(s1,s/)

e < T AT

Ple < 1222 0 N,

A similar result (with necessary substitutions of new numbers) will be valid under the

assumption that signal s () is actually received instead of s;(#), so that with a priori

equiprobable M signals the final upper union bound on the complete (unconditional)
error probability takes the form:

M

1 & 1 M d?(sy.,s7)
Pe = _Zpk,e S Y Z Q — (222)
M & M -

k=11 2No
I

The first noteworthy fact about (2.22) seen directly is that it becomes a precise
equality when M = 2. Another observation is linked to its asymptotic behaviour with
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growth of SNR. As a matter of fact, the complementary error function Q(x) drops
approximately as exp (—x?/2) when x is sufficiently large, and even a small increment
of large x may reduce Q(x) to a negligible level in comparison to its initial value. Due
to this, when SNR is large enough only the closest signal pairs may contribute
perceptibly to the sum in (2.22), and if dp;, is the minimum distance over all signal
pairs occurring 7y, times among them, estimation (2.22) transforms asymptotically
into the following:

Nmin d2< d2 :
P ~ min min 1 2.23
<~ 2\ 2N, INy (2.23)

Approximation (2.23) points, above all, to an asymptotic convergence of the union
bound to the genuine value of the error probability, SNR increasing. To explain it
physically, return to Figure 2.3 and note that when the noise level is very low only the
signal vectors which are nearest to the true one are at risk of being erroneously mistaken
for the latter. This means that asymptotically only signal pairs with distance dpi,
determine the true error probability P, itself (not only its upper bound!), which entails
closeness between P, and its union bound.

Result (2.23) underlies one of the possible and most important formulations of
the signal design problem: maximization of minimum distance between M signals.
As was already mentioned in Section 2.1, such a task is geometrically equivalent to
packing M vectors in such a manner that the closest pairs of them have maximal
achievable distance: dy, = max. Various limitations can be imposed on a signal
(vector) constellation. First of all, some energy constraint should be prescribed, allowing
for practical power/energy limits. If only the average energy of signals is fixed
E= ZkM: | Ex/M = const, then signal vectors can have different lengths and their
selection procedure may be called volume packing. Very frequently, however, it is
required that no energy be involved in mapping messages onto signals, i.e. that all
energies be the same E, = E = const,k = 1,2, ..., M. In this case all signal vectors have
equal lengths, i.e. lie on the sphere surface, hence the name spherical packing.

The other typical limitation in signal design is the dimension #n, of signal space, inside
which signal vectors are packed. The physical content of this constraint is again
associated with a very practical limit on the bandwidth resource. To explain the
interconnection between them, consider first the case of baseband signals and suppose
that the total (two-sided) bandwidth and time interval which can be allocated to all
M signals together are limited to W, and T, respectively. The first of these restrictions
allows for bandwidth saving, while the second reflects the desire to transmit necessary
data during an acceptable time period, i.e. with acceptable transmission rate
R =log M/T,. Then, according to the sampling theorem, only about W, T, independent
samples are at our disposal to synthesize M signals, each signal being thereby treated as
a vector in the space of dimension ny, = W,T,. Some caution in estimation of the
number of independent samples is caused by the impossibility of the energy of any
signal being concentrated within finite intervals of both the time and frequency domains
simultaneously. But in the first-approximation estimates this theoretical fact can be
ignored.
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To cover also the case of bandpass signals, let us turn to a general model of such a
signal:

s(t) = S(1) cos2mfot + (1)) (2.24)

in which S(¢) is the real envelope (amplitude modulation law), () is the phase modula-
tion law and fj is the carrier frequency. Using trigonometry identity for the cosine of
the sum of angles, we can represent this equation as:

s(t) = Si(t) cos 2mfot — So(t) sin 2wfyt (2.25)

where S;(t) = S(f) cosy(¢) and So(f) = S(¥) sin~(¢) are the signal quadrature components.
Since both S(¢) and +(¢) are baseband waveforms, the same is true as for S;(¢), Sp(?),
meaning that, given the carrier frequency, every bandpass signal is exhaustively
characterized by two independent baseband quadrature components. Therefore, twice
the number of independent coordinates (samples) can be used to design bandpass signals
compared to the case of baseband signals with the same total time frequency product
and ng, = 2W,T,.

Now the general problem of signal set design can be formulated as follows: find the
constellation of M points or vectors in space of a given dimension n satisfying
energy limitations and having maximal possible minimum distance between points
dmin = max. This can also be restated in a dual form: find the constellation of M points
in space of a given dimension n, with pre-assigned minimum distance dy,j, minimizing
energy expenditure in terms of either average energy E = min (volume packing) or the
same energy of all signals £ = min (spherical packing).

The simplest version of this problem (n; = 1) corresponds to ASK (the simplest
version of which with M = 2—a binary one—was touched upon in Section 2.2).
Another name for ASK is pulse amplitude modulation (PAM). In this case all signal
points lie on the same straight line and with M > 2 only the ‘volume’ packing is
tractable. It is not hard to see that the optimal constellation minimizing average energy,
dmin pre-assigned, is uniform and symmetrical with space between neighbouring signal
points exactly equal to dni, (see Figure 2.6a for the example M = 4).

d\mm=\/41::/5 doin="2EI5 d =2 -~2E =0.77+E
\ ~
\\ ' \\\ I
\ \ N
\ \ N
\ O< —--»0 o o N
\ e (RN
\ pf“/ Y
‘\ ’ \
1 | , N
~ " o o o o / \
| | 1 \
R - e
I
o o o o \\ \E /
\ ’
\Q\ P
o o o o \\“T”/
(a) (b) (c)

Figure 2.6 One- and two-dimensional constellations: 4-ASK (a), 16-QAM (b) and 8-PSK (c)
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When n; = 2, finding the optimal constellation with volume packing becomes more
difficult and may even lead to asymmetrical patterns, while spherical packing is trivial
and is performed by a uniform placing of M points on the circle of radius vE. Widely
practised in modern digital communications, M-ary quadrature amplitude modulation
(QAM) gives an example of symmetrical volume-packed two-dimensional constellations
which are not necessarily theoretically optimal but convenient from a hardware
implementation point of view (Figure 2.6b, M = 16). On the other hand conventional
M-ary phase shift keying (PSK) constellations have uniformly spaced points on the circle
and are optimal in terms of spherical packing (Figure 2.6¢c, M = 8).

The problem of optimal packing in spaces of higher dimension n; > 2 is very complex
and has no general mathematical solution so far. Many useful particular results are
scattered over the range of books and papers (see, e.g. the bibliography in [11] and web
site [12]).

Let us now try to find an upper limit on the minimum distance in the loosest
statement imposing no preliminary binding on the signal space dimension n,, and
estimate the minimal value of n;, which allows this limit to be achieved. Restricting
our attention to the spherical packing (Ex = E,k = 1,2, ..., M), calculate the sum of all
M? squared distances, including trivial ones (from any signal to itself). Cosine theorem
(2.16) gives:

M
> d(si.s1) =2MPE - 2E Z i (2.26)
k=1 k=1

with py; being the correlation coefficient of the kth and /th signals. To estimate the sum
of all correlation coefficients use definition (2.14) for py;, change the order of integration
and summation, and note that the double sum in the integrand has separable summation
indexes k and /, which transforms it into a product of two identical sums:

M T/ m T/ m 2
EZpk/:/(Zsk(t)sl(t)>dt=/(Zsk(t)> dr
k=1 0 \ki=1 0 \k=1

Since the integral of a square is never negative, it follows from (2.26):

M
dz(S/\», S]) < 2M’E
=1

At the same time, the sum above is no smaller than M(M — 1)d2, . Combining this
inequality with the preceding one results in the upper border on the minimum distance:

d> 2M ——E (2.27)

min — 1

If M signals achieving this upper bound existed they would be quite fairly called
optimal in terms of the minimum distance criterion. To show that they do exist, take
M vectors wi,k =1,2,..., M having zero pairwise inner products and unit lengths:
(e, wy) = b, k, 1 =1,2,..., M, where 6 =0,k #1; 6 = 1 is the Kronecker delta
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function. Such vectors, called orthonormal, exist in any vector space whose dimension
is no smaller than M. Now form M new vectors v,k = 1,2,..., M, subtracting from
each of u; the sum u = Z,iwzl u; weighted by a coefficient 1/M: v, = uy —u/M. Calcu-
late the inner product of v, and v,. Due to its linearity:

1

1 1 1
(Vie,v;) = (ug, ;) — I (ug,u) — I (u,uy) + W(u, u) = b — I (2.28)

where use is made of the orthonormality of vectors u;. Let us change the lengths of
vectors vi, multiplying them by /ME/(M — 1), and take the resulting vectors as signal
ones:

ME

=V

Vi, k=1,2,.... M (2.29)

Then the squared distance between two signals according to cosine theorem (2.16) and
equation (2.29) is:

ME
dz(sk, Sl) = ﬁdz(Vk, V/)

ME
= 31 PP =20 =

2ME

e kA (2.30)

which coincides with the right-hand side of (2.27). Hence, signals lying on the bound
(2.27) really exist. More than this, the distances between any two of them are the same,
i.e. these signals fall into the category of equidistant ones. They are widely known under
the special name of simplex signals. Directly from their definition it follows that:

M M
Zsk = /ME/(M — I)ka =/ME/(M —1)(u—u) =0
k=1 k=1

meaning that simplex signals are linearly dependent, unlike initial orthonormal vectors
u;. It is easily verified that the dimension ng = M — 1, i.e. smaller by one than the
number of signals, is necessary and sufficient for constructing M simplex signals.

The property of equidistance of simplex signals also entails equality of correlation
coefficients py; for any pair. Evaluation of py; with the help of (2.14), (2.29) and (2.28)
results in:

(Vi, V1) 1
Pt = - kAL k=12, M
vl |vell M—1

showing that the angles between any two simplex signals are the same and greater than
m/2. For the simplest sets of M = 2, 3, 4 simplex signals (see Figure 2.7), the values of the
correlation coefficient equal —1 (antipodal signals), —1/2 and —1/3, respectively, which
in turn correspond to angles 180°, 120° and approximately 110°. When M = 4, simplex
vectors form the simplest regular polyhedron (tetrahedron), which explains the name of
the signals: simplex is Latin for ‘simple’.
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Figure 2.7 Examples of simplex signals

For any equidistant signal set d(sg, ;) = dmin for all pairs of distinct vectors so that in
(2.23) npin = M(M — 1), and this is also the number of summands in (2.22). Substitution
of this along with (2.30) in equation (2.23) gives an approximation of the asymptotic
error probability achievable with simplex signals, which according to (2.22) is at the
same time the upper bound of the error probability:

Since simplex signals are optimal as for minimum distance, the right-hand side of the
latter expression presents simultaneously the minimum possible asymptotic error prob-
ability for M signals of fixed and equal energies E.

The orthogonal signals, which are another example of equidistant signals, are practically
as effective as the simplex ones when the number of signals M is sufficiently large. Indeed,
the correlation coefficient of orthogonal signals is zero and the distance between any
two of them d(si, ;) = dmin = V2E. This, used in (2.23), produces an asymptotic error
probability for M orthogonal signals, which again borders the exact error probability from

above:
Pe,ort S (M - I)Q(\/NE()> (232)

Comparing (2.32) and (2.31) shows that to equalize the error probabilities in both cases,
orthogonal signals should be of M /(M — 1) times higher energy than simplex signals, i.e.
energy loss v of the first to the second ones is defined as v = M /(M — 1). When M > 1
this loss is negligible and orthogonal signals can be considered optimal; e.g. for
M = 64 v = 64/63, which corresponds to an increase of energy of orthogonal signals
against simplex ones by less than 0.07dB (or 2%). This discrepancy is certainly of no
practical significance, and whenever M is large enough orthogonal and simplex signals
can be used interchangeably depending on implementation or other reasons.

Talking about M-ary orthogonal signalling (in the literature the terms orthogonal
modulation and orthogonal coding are also used), let us remember that the maximal
number of orthogonal signals is exactly equal to the signal space dimension: M = n;.
Therefore, within the fixed total bandwidth W, and duration T}, up to W, T, baseband
or 2W,T, bandpass orthogonal signals can be accommodated. Additional physical
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reasoning for a doubling of the number of orthogonal bandpass signals against base-
band ones follows directly from equations (2.24) and (2.25): building up n, orthogonal
signals of the form (2.24), we can add to them ng; more, obtained by just shifting the
carrier frequency phase by angle 7/2. This possibility is practical only when all signals
are deterministic or coherent, which means that their carrier phases are controllable and
can actually be used for message identification. In reality, however, this may often not
be the case because either a transmitter itself or a channel may destroy the coherence of
signals in such a manner that their phases become random and as a consequence cannot
be used for distinguishing messages. This case is addressed in Section 2.5.

2.4 Complex envelope of a bandpass signal

Before extending our discussion to the more complicated models of the M-ary transmis-
sion, it is reasonable to diverge from the main line in order to recollect some more facts
about handling bandpass signals.

Let us begin with the observation that the real envelope S(¢) in equation (2.24) is
fictitious, i.e. is just a suitable artificial instrument, whereas only the signal s(¢) itself is
an observable physical reality. More than this, equation (2.24) does not give any unique
definition of the envelope of s(¢). In fact, it follows from (2.24) that one may take an
arbitrary ‘phase modulation’ law «(¢), and then ‘envelope’ S(¢) = s(¢)/ cos [2nfot + ()]
will produce a given signal s(¢). Therefore, some special agreement is needed on how to
interpret the notion of an envelope or amplitude modulation S(¢).

A universally adopted basis for determining the envelope is the Hilbert transform. By
its physical content, the Hilbert transform is just filtering which rotates the phases of all
harmonic components independently of frequency through the same angle, —7/2, and
does not change the amplitudes of the harmonics. In the frequency domain such a
transform simply means multiplication of the signal spectrum by —jz/2 for positive
frequencies and by j7/2 for negative ones, and, therefore, the transfer function of a
Hilbert filter is he(f) = —j(n/2)signf, where signx =1,x > 0; signx = —1,x < 0.
Straightforward calculation of the inverse Fourier transform of this leads to a filter
pulse response /g(f) = 1/mt. Hence, in the time domain the Hilbert transform s, (¢) of
signal s(#) may be presented via the convolution integral:

/ $0) 49 (2.33)
0

-0

N | —

s1(t) =

Using the definition of the Hilbert transform and the Parseval theorem, the reader may
easily prove the following relations:
L(0)
dé
/ t—0
0

which is nothing but the inverse Hilbert transform, and:

(u,v) = (uy,vy) (u,vy ) =—(ug,v) (2.34)

5%

3| —

s(t) = —
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The first equation in (2.34) shows that the Hilbert transform preserves the inner product
of signals u(¢), v(¢), while the second establishes the interrelation between the inner
products of one of the signals and the Hilbert transform of the other.

Returning now to the issue of the signal envelope definition, we put:

S(t) = 1\/s2(1) + 52 (1) (2.35)

At first glance, this definition of the envelope looks somewhat artificial; however, a
deeper insight uncovers its complete naturalness. Indeed, how would we calculate the
unknown constant amplitude 4 of the unmodulated continuous wave (CW) i.e. the
observed signal u(7) = A4 cos (2nfyt + )? One way is to take the signal itself and its copy
v(f) rotated through the angle —7/2 and then make use of Pythagorean theorem:

A = /u*(t) + v3(¢). But it is seen at once that for the unmodulated signal u(z) its
phase-shifted copy v(¢) is nothing but the Hilbert transform: v(z) = u, (¢). Thus, we have
a result absolutely consistent with (2.35). Now take a modulated signal s(¢). Its envelope
S(?) is just instant amplitude at time moment ¢. For a bandpass signal it changes slowly as
compared to the CW cos27fyt, and we can treat s(¢) within a sufficiently small time
interval around the moment ¢ as though it is the unmodulated harmonic with amplitude
S(f). Then how do we find this amplitude S(7)? Exactly as it is done for the unmodulated
signal, i.e. by —n/2 phase shifting (Hilbert transform) and application of Pythagorean
theorem (2.35). Figure 2.8 illustrates this. Thus the problem of unambiguous understand-
ing of a bandpass signal envelope is solved and definition (2.35) may be used universally.

Analysing bandpass signals becomes much easier with the introduction of one more
very convenient tool—the complex envelope S(r), which is a complex-valued function of
time defined immediately by equation (2.24) or (2.25) once the definition of the real
envelope is specified:

S(1) = Si(1) +jSo(1) = S(1)[cos (1) +jsin(1)] = S(z) expjy(7)] (2.36)

where j =+/—1 and the Euler formula is used. As is seen, the complex envelope
integrates in itself both amplitude and angle modulation of the signal. If several signals
are considered, given the common frequency carrier, their distinction consists only in
modulation laws, and hence complex envelopes give an exhaustive description of them.
Certainly, a complex envelope, along with a real one, is just a suitable mathematical
fiction and the ‘true’ signal (2.24) is expressed in terms of the complex envelope as:

s(1) = Re[S(r) exp(j27fo1)] (2.37)

s,(1)

s(1)

Figure 2.8 The definition of envelope
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where Re stands for taking the real part of the complex entity, and the second cofactor
in the square brackets is a complex notation of the CW of a carrier frequency f, through
the Euler formula. Turning again to Figure 2.8, we can see that with s(¢) treated
according to (2.37) as a real part of the complex signal S(7) exp (j27fy?), the imaginary
part of the latter is the Hilbert transform of s(¢):

5. (1) = Im[S(¢) exp(2nfot)]

This leads to one more complex substitute of the real signal, called the analytic signal:

(1) = S(1) exp(j2nfot) = s(1) +js. (1) (2.38)

Formally, the analytic signal uses complex notation to advance factorization model
(2.24) of a bandpass signal so that the first factor covers all modulation (not only
amplitude modulation) and the second is responsible for only the unmodulated CW of
a carrier frequency fj.

Using the basic rule of spectral analysis, it may be easily proved that the spectrum of
the complex envelope of a bandpass signal (2.37) is located around zero frequency.
Therefore—since, given the carrier frequency, the signal is entirely presented by its
complex envelope—the latter is a baseband equivalent of a bandpass signal, simplifying
the analytical and computational work by getting rid of the carrier frequency dependence.

In what follows we will need a generalized version of the inner product (2.5), which is
applicable not only to real signals u(¢), v(¢) but also to their complex substitutes—
analytic signals (1), ¥(f) or complex envelopes U(7), V(7). This modified inner product
is defined as:

T T
(,7) = / a0 (1)dt = / UV () d = (U, V) (2.39)
0 0

where a complex conjugation is used to preserve the equality between the inner product
of the vector by itself and the vector squared length (always real and non-negative!),
while coincidence of the inner products of analytic signals and complex envelopes
follows from definition (2.38). Specifically, for a signal s(¢) of energy E, according to
equations (2.36) and (2.35):

T

T T T
$,8) = |8’= [ 1S()Pdt = | S2(0)de = [ L(de+ [ S (r)dr=2E  (2.40)
[sora=[soo= [ o ¢

0

since the Hilbert transform does not affect the amplitude—frequency spectrum and
therefore the energies of s(¢) and s, (¢) are always the same.

Let us now take two signals sx(?), s;(f) and calculate the squared distance between their
complex envelopes Si(7), Si(?):

P(S68) = 8- SI’= S — S8 - $)
= 28 + 2 — 4Re[ /i E| (2.41)
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where use is made of the linearity of inner product (2.39) and equation (2.40); while py;,
as in (2.16), is again the correlation coefficient but adapted to complex-valued signals,
e.g. complex envelopes:

5 (Skasl) / g
TSNS Se(1)SE (1) d
s el " 2B MOS0

(2.42)

Equation (2.41) may be treated as the cosine theorem for complex vectors and Re[py,] is
an adequate measure of resemblance between the complex envelopes of signals s;(7) and
s;(f). Using the equality between inner products of analytical signals and complex
envelopes (2.39) and equations (2.38) and (2.34), the integral in (2.42) can be reduced
as follows:

/ Su(0$7 (01 = [ (510 + s ()10 s () de = 2s3) + 2(52,1)
0

so that Re(px) = pis, 1.€. coincides with the ordinary correlation coefficient of signals
sx(2), s(¢) defined by (2.14). This being allowed for in (2.41) ties together the distances
between the complex envelopes and the signals themselves:

d*(S,S)) = 2d*(sy, 1) (2.43)

The last result is one of many examples of the productiveness of the notion of complex
envelope: manipulations with complex envelopes are very often much more compact
and feasible than those with bandpass signals themselves, being free from the bulky
trigonometric functions of carrier frequency terms.

2.5 M-ary data transmission: noncoherent signals

Let us now proceed to a problem of M-ary data transmission, but this time, unlike
Sections 2.2 and 2.3, assuming that the signals are not fully deterministic. As has already
been pointed out, in real life situations are very likely when either the transmitter or a
channel can not preserve the coherence of bandpass signals and the latter acquire
random phases at the receiving side. In this case initial phases cannot take part in
message distinguishing, and the distinctness of signals should go beyond only phase
shifts. Scenarios of this sort are termed noncoherent reception.

Suppose that the kth bandpass signal si(z) has the modulation law described by a
deterministic complex envelope Si(7) and a random time-constant initial phase ¢;. Then
it can be presented according to model (2.37) in the form:

si(1; di) = Re[Sk(1; ¢x) exp(j2mfo1)]

where a ‘complete’ complex envelope consists of the deterministic part and a part
allowing for a random initial phase: Sx(#; ¢x) = Sk(?) exp (jor).
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To calculate the distance between the signals s (#; ¢r), si(t; ¢;) we can make use of
equation (2.43) and evaluate the distance between the complex envelopes
Si(t; dx), Si(t; ¢;) instead of the signals themselves. Doing this, consistent with the
generalization of the cosine theorem (2.41) and under the assumption that all signals
have identical energies E, we get:

d*(Sks, Sig) = 4E[1 — Repyu(4)]

where the additional subscript ¢ underlines the correspondence of the vector St to the
complete complex envelope Si(#; ¢x), independence of signal energy E of initial phase ¢y
1s taken into account, and:

T
S& ,S 1
pri(¢) = ( ]d) & =5E /Sk (t; 6x) Sy (15 1) dt
0

is the correlation coefficient of the complete complex envelopes Si(t; ér), Si(t; ).
Phases ¢y, ¢; being independent of time, the latter quantity can be rewritten as p/(¢)
= prrexp [j(ér — ¢1)], where the correlation coefficient pi; covering only the deterministic
(random-phase-free) complex envelopes Si(7), Si(7) of the signals is introduced:

T

. (S 7S 1 ) .

= E2 [ 0310 =l explions) 2.44)
0

where ¢y = arg (pr)-
Now, the squared distance above takes the form:

d*(Sks,Si6) = 4E[1 — | pra| cos(d + dx — ¢1)] (2.45)

The trouble about this distance is its dependence on unknown signal phases ¢, ¢;. Due
to this, there are a lot of distances for the fixed deterministic modulation laws Si(7), S(7)
governed by a random phase difference ¢ — ¢;. With a perceptible level of the correl-
ation modulus |py,| the hazard is always present that due to unfavourable combination
of phases (that is, when ¢y + ¢ — ¢; is small enough) the distance (2.45) may prove
very small. To fully ensure against it, the correlation modulus should be as low as
possible and the best signal set should obey the condition:

(Sk, S/)

e =0 kAL k=12 M (2.46)

Pk1 =
As is seen, we again, as in Section 2.3, come to orthogonal signals. This time, however,
the orthogonality condition is much more binding, forcing complex envelopes, or in
other words modulation laws, of signals to be orthogonal, not just the signals
themselves. Because of this, bandpass signals retain orthogonality under any combin-
ations of their phases, since p; = 0 entails pg/(¢) = 0. On the other hand, condition (2.46)
excludes the opportunity to provide orthogonality by means of a quadrature phase shift
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of the carrier, which was available for coherent bandpass signals. The direct implication of
this is a halving of the signal space dimension #,, given the total bandwidth W, from
2W,T,, as was the case for deterministic bandpass signals, to only W, T,. This can also be
explained in a slightly different way: the orthogonality should now be observed between
complex signals, i.e. in the complex vector space. Each complex vector is actually a pair of
real ones (real and imaginary parts), and hence requires for representation two-dimen-
sional vector space, i.e. a plane. All of these planes should be orthogonal to each other.
Since the entire available dimension is 2 W, T}, it may accommodate only W, T, orthogonal
planes, i.e. W, T, orthogonal complex signals.

It is noteworthy that, in contrast to what has taken place for M deterministic signals,
in the noncoherent case orthogonal signals are strictly optimal regardless of their
number. For instance, the optimal noncoherent pair of signals is orthogonal, the
antipodal one making no sense since phase randomness erases any distinction between
the antipodal signals.

One more comment is appropriate as clarification of the optimal decision strategy
for noncoherent reception. Observation y(f), being some bandpass waveform, may
itself be expressed in terms of its complex envelope or modulation law Y(7): y(f) =
Re[ Y (1) exp (j27/1)]. Naturally, Y(7) is a random process. To declare one of M competi-
tive signals to be the received one, the distances between signals and observation should
be compared, which according to equation (2.43) is equivalent to comparing
the (squared) distances between signal complete complex envelopes and the observed
complex envelope d*(Sks, Y) = ||Y||"+2E — 2Re[2(¢)]. where 2(¢y) is the correlation
(inner product) of the complex envelopes of the observation y(¢) and the kth random-
phase signal s;(z; ¢x). To get rid of the dependence on a random phase, it is logical to
pick for comparison only the minimum distance over all the range of ¢, for each k.
Dropping details reproducing almost literally those above, the resulting decision rule is
expressed in terms of a correlation modulus:

T
Zi = /Y(z)s';;(z)dz,kzl,z,...,M (2.47)
0

meaning that the jth signal is declared received if its deterministic complex envelope has
the highest correlation modulus with the observation complex envelope. In other words,
the old and well-tried idea is exploited: the signal whose modulation law has maximal
resemblance with the modulation law of the observation is picked up.

2.6 Trade-off between orthogonal-coding gain and bandwidth

The previous discussion clearly illuminated the special role played by orthogonal signals:
they are practically (M > 1, coherent signals) and even theoretically (noncoherent case)
optimal in M-ary data transmission. Let us now evaluate the benefit which accompanies
employing orthogonal signals against uncoded, i.e. direct source bit stream transmission.
Suppose the energy resource allows the energy Ej, to be put into each data bit, no special
coding of the bit stream is used and an individual bit is transmitted by optimal antipodal
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pair, in other words by BPSK. In a block of m successive bits any bit patterns are possible,
including those which differ from each other in only one bit. Therefore, the minimum
squared distance between signals corresponding to non-identical m-bit blocks is the same
as the squared distance between the one-bit antipodal signals, i.e. according to Figure 2.5a,
d2in ., = 4Ep, where the second subscript stands for ‘uncoded’.

Now consider another system, where all different m-bit blocks are transmitted by the
orthogonal signals. Clearly, every such signal is allowed to have energy mE,, preserving
the fixed energy per bit E,. Then the squared distance (all of them are now the same,
because orthogonal signals are equidistant) between signals is again easily found
referring to Figure 2.5b: dfmn‘or, = 2mEy. It is obvious now that orthogonal signals
have a gain G, in minimum squared distance versus uncoded transmission equal to
m/2. Putting it another way, to provide the same minimum distance, uncoded transmis-
sion requires G, = m/2 times higher energy than orthogonal signalling. In view of
equation (2.23), minimum distance asymptotically determines error probability for
whatever signals are used in M-ary transmission. Hence, when required reception
fidelity is high, which automatically entails high value of required SNR, identical
reliabilities of the two considered systems are possible with G, times higher energy
for the uncoded one. Thus, the asymptotic orthogonal coding gain G, is an adequate
indicator of the benefits of orthogonal signalling in the limit, i.e. under SNR tending to
infinity.

In order to get an idea about the order of orthogonal coding gain under finite SNR
as well as the rate of its convergence to the asymptotic limit, Figure 2.9 presents families
of curves for two lengths of m-bit blocks: m = 6 and m = 20. The first curve (solid)
shows the probability of wrong reception of an uncoded block, and the other two
are calculated for the case when m-bit blocks are encoded into M = 2" orthogonal
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Figure 2.9 Comparison of error probabilities for the uncoded transmission and orthogonal
signalling
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signals processed coherently. The dashed curve is built up according to the union
bound (2.32), while the dash-dot one corresponds to the accurate formula for error
probability of coherent reception of M orthogonal signals, derivation of which
the reader can find in many popular books on communication theory fundamentals

(e.g. [5,7]):

Py =1 / expl_w

—00

M1 (x)dx

where g, = \/2E;/Ny is SNR per bit and ®(x) = 1 — Q(x) is the error function.

The by-product conclusion, which can be drawn from Figure 2.9, is the very high
trustworthiness of the union bound: practical applications typically demand small error
probabilities and it is seen that in the area P, < 1072 the gap between the value of
bit SNR estimated from the union bound and that calculated precisely appears to be
less than 0.5dB. It drops rapidly when the requirements for transmission fidelity
get tougher (becoming no greater than 0.2dB when P, < 1073). In the range of P,
from 1072 to 10~ actual gain G of orthogonal signalling increases from 3.5 to 4.2dB
(m = 6) and from 8.5 to 8.9dB (m = 20). Comparing these figures with the asymptotic
ones (4.8 and 10dB, respectively) one can see rather good consistency between them,
justifying usage of asymptotic coding gain as a first approximation of the orthogonal
coding efficiency.

The very optimistic judgement on orthogonal signalling prospects which may arise in
the light of the above results is significantly shadowed by the real cost of the coding gain.
The latter is bought at the expense of bandwidth widening because, as was established
in Section 2.3, the signal space dimension 7, i.e. the number of orthogonal signals
M = ng, 1s immediately governed by the total system time—frequency resource W,T,.
Being mainly interested in finding the order of quantities and ignoring trivial way of
doubling the number of coherent orthogonal signals, we have M = W, T, or W, = M|T,.
Let the necessary data rate in a system be R bits per second (bps), which means
transmission of m = RT, bits over the time period T7,. It is seen that orthogonal
encoding of bit-blocks of this length will produce M = 2" = 2RT: signals, providing
asymptotic coding gain G, = m/2 = RT,/2. Then the spectral efficiency R/W,, i.e.
the rate per 1 Hz of bandwidth (see Section 1.1), of the system employing orthogonal
signals:

R RT, 2G,

falls quite steeply (almost exponentially) with the desired coding gain.
Let us turn to a typical numerical example.

Example 2.6.1. The data rate R = 9.6 kbps is very typical of digital speech transmission (mobile
telephone, multimedia systems etc.). Suppose someone wants to reduce by three (4.8 dB) the
transmitted power without sacrificing the data rate. If that person intends to achieve this goal
with the help of orthogonal signals, it is possible in exchange for lowering the spectral efficiency
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from 1 to 6/64, as predicted by equation (2.48). In other words, to maintain a rate of 9.6 kbps
bandwidth wider than 100kHz will be involved. This is not a prohibitive figure for many
applications and, for instance, the cdmaOne cellular telephone standard exploits exactly this
principle in the uplink (for more details see Section 11.3).

Let us now imagine a designer who is quite impressed by the figure above and plans to go
further along the same way, targeting a 10-times (10dB) reduction of transmitted power. To
realize that, blocks of m = 20 bits should be converted into M = 22° > 108 orthogonal signals.
This will lead to spectral efficiency less than 2 x 107° or bandwidth occupied wider than
480 MHz, which looks wholly impractical versus the data rate 9.6 kbps.

The discussion undertaken illustrates the very tough character of the trade-off
between energy efficiency and spectral efficiency inherent in orthogonal signalling.
At the same time it is pertinent to note that, although big energy gains are unattainable
in practice with orthogonal signals due to the enormous demand for bandwidth,
asymptotic orthogonal coding gain may serve as a good reference point, being the upper
border of theoretical efficiency of any m-bit-block coding.

Return now to equation M = W, T, and consider the question: when the number of
orthogonal signals and thus the product W, T, is measured in the tens or more, does it
point to a spread spectrum? In other words, is a system exploiting numerous orthogonal
signals always a spread spectrum one? As the discussion in the next section shows, the
answer to this question is in general negative.

2.7 Examples of orthogonal signal sets

Throughout this section we will again ignore the opportunity of doubling the number of
orthogonal signals by quadrature carrier shifts, which is always present in a coherent
bandpass system, and concentrate only on the dependence between M and equivalent
baseband system time—frequency resource W, T,. We will demonstrate first how to build
the simplest orthogonal sets based on fragmentation of an available resource.

2.7.1 Time-shift coding

It is obvious that the inner product of any two non-overlapping time-shifted signals is zero.
Consider M signals shown in Figure 2.10a, which occupy jointly time period 7,. With
signal duration no greater than 7' = 7,/ M and the time shift between successive signals no
smaller than the signal duration, this time-shift coding produces orthogonal signals. The
estimated bandwidth W of each of these signals is inverse to its duration and all the signals
are permitted to occupy the same bandwidth with no violation of orthogonality: W = W,.
Hence, the maximal number of orthogonal signals of this sort which can be accommo-
dated within a given total time—frequency resource 7, W,is M = T,/T = W,T,, i.e. as is
easily foreseen, it is equal to the signal space dimension n; = W,T,. A high necessary
number of signals M >> 1 implies a large product W, T, = M, which may seem to point to
spread spectrum. However, for any individual signal the time—frequency product is
WT =W, T = W,T;,/M = 1, so that the signals are not of spread spectrum type. In the
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Figure 2.10 Orthogonal time-shift coded (a) and frequency-shift coded (b) signals

wake of the agreement to call a system ‘spread spectrum’ only if it uses spread spectrum
signals (see Section 1.1), orthogonal time-shift coding has nothing to do with spread
spectrum.

Let the total time—frequency resource be identified with a rectangle having sides
T;, W, in the ¢, f coordinate plane. Then time-shift coding just means slicing this resource
into M vertical strips, each being assigned to some individual signal (see Figure 2.11a).
Orthogonality in this transmission mode is provided by a rigorous distribution of the
time resource between signals, each exploiting the total spectral resource.

The orthogonal signalling scheme just introduced may seem attractive from an imple-
mentation point of view due to its apparent simplicity. Its weaknesses, however, are also
conspicuous and should be kept in focus. First, accurate synchronization is necessary, any
potential fluctuations of signal time positions being capable of destroying orthogonality.
This requires secure safety margins between signals, which reduces the number of signals
compared to the theoretical maximum, i.e. worsens spectral efficiency. Another issue is the

W=W W, Iy
W=W,/M
12 | ko M = \'_} X
2
1
o T, T,=T
T=T,/M
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Figure 2.11 Resource distribution in orthogonal time-shift (a) and frequency-shift (b) coding
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value of the peak-factor v, which is the ratio between peak and average powers. Because an
individual signal occupies only an Mth part of the available time resource, average power
is M times smaller than peak power and v = M > 1. At the same time, in designing a
transmitter power amplifier, a small value of v is crucial: the closer it is to 1, the softer are
the demands on the linearity of an amplifier and the better is its power performance.

2.7.2 Frequency-shift coding

The other straightforward way to provide orthogonality is frequency-shift coding. Due
to time—frequency duality or Parseval theorem, the inner products of signals u(?), v(¢)
and of their spectra u(f), v(f) coincide:

(w,v) = / u(t)v(r) di = / a7 ()df = (6,9) (2.49)

which allows transfer of the idea discussed above into the frequency domain (see Figure
2.10b). With an entire overlap of the signals in time (7" = T) each of them has bandwidth
W = 1/T, at the least. Thus the maximum number of orthogonal signals formed by
shifting the spectra is again M = W,;/W = W, T, = n,. As in the previous case, the total
resource is again ‘sliced’, but differently: the strips are horizontal, meaning that the total
time resource 7, but only an Mth part of the entire frequency resource W, are utilized by
every signal (Figure 2.11b). Clearly, each individual signal is again non-spread-spectrum
since its time—frequency product WT = (W,/M)T, = 1, and any system with however
large a number of orthogonal signals of this sort is certainly not a spread spectrum one.

The peak-factor of this mode of orthogonal signalling, unlike time-shift coding, is v = 1
and synchronization errors are not that dramatic because orthogonality is provided by
signal non-overlap in the frequency domain. Instead, spectra drifts (e.g. because of
Doppler shifts) may sometimes be destructive. Still, this transmission mode is extremely
popular and the conventional M-ary FSK modulation is its direct embodiment.

The examples considered explain why employing even a great number of orthogonal
signals and, hence, the necessity for a total resource W,T; > 1 does not automatically
mean the involvement of spread spectrum technology.

2.7.3 Spread spectrum orthogonal coding

Fragmentation of the total time—frequency resource inherent to the two discussed modes
of orthogonal signalling may in some cases be a preferable solution in connection with
hardware implementation aspects. However, with M increasing reasons of this sort are
getting more doubtful since, as mentioned above, time-shift coding demands a high
peak-factor while frequency-shift coding implies optimal processing with a bank of
numerous parallel frequency-detuned filters.

Under such circumstances spread spectrum orthogonal signalling can prove very
competitive, allowing all signals to share a total time—frequency resource with no
distribution or slicing of the latter. Consider a simple example of realization of the idea
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in the form of discrete BPSK signals. Compose each of M signals of N consecutive
contiguous elementary pulses or chips, each having the same rectangular shape and
duration A. Let the chip polarities of the signal number k& be manipulated by a code
sequence (or simply code) of binary symbols a; ; = =1, where k =1,2,..., M and the
second subscript is chip number (discrete time): i = 0,1,..., N — 1. Then the baseband
version of such a signal may be written as:

N—1
= aiso(t — i) (2.50)
i=0

with so(¢) symbolizing the rectangular chip of duration A.
Calculate now the inner product or correlation (2.5) of the kth and /th signals. After
changing the order of summation and integration:

2
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(Sk,81) = ax ,a;,/so (t — iN)so(t — jA)dt (2.51)
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The integral here is the inner product of two chips time-shifted to each other by (i — j)A.
When i # j it equals zero since chips in the integral have no overlap in time. Thus:

T
/so (t —iA)so(t — jA)dt = Eyd;
0

where Ej is the chip energy. Using this in equation (2.51) produces:

N—-1

(Sk,s1) = Ep Z ariar; = Eo(ag, a;) (2.52)
pry

Equation (2.52) relates the inner product of the signals (2.50) with an inner product of
N-dimensional vectors of the corresponding code sequences ax = (dx.0, k.15 - - - » Ak, N—1)-
As can be seen, M orthogonal code sequences automatically generate M orthogonal
signals of the type (2.50). With M < N there are many ways to construct such sequences
because the case in point is simply finding M < N orthogonal N-dimensional vectors. In
our discussion those vectors are binary, i.e. with components taking values of +1 only.
M = N orthogonal binary vectors used as rows form a square matrix called the Hada-
mard matrix. It is not difficult to prove (the reader may try attempt it; see Problem 7.14)
that only Hadamard matrices of size divisible by 4 can exist: M = Omod4, where the
symbol of congruence ¢ = bmodc is used, meaning equal residuals of dividing integers a,
b by the integer ¢. No answer has been found as yet as for the sufficiency of this
necessary condition.

A number of algorithms are known for building Hadamard matrices of the special (not
sparse) lengths. One is the very popular Sylvester rule, which doubles the matrix size
recursively. To explain its content let us suppose that Hadamard matrix H,, of size M has
been somehow found. Then the double-sized Hadamard matrix H,,, can be constructed of
four repetitions of Hy,, taken as blocks, one of them being sign-changed:
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Hy, Hy
1 -1

11
Hyy = {HM _H, { }@HM (2.53)

where the second equality expresses the rule in terms of matrix Kronecker product ®.
The orthogonality of rows of Hy,, is obvious: if two rows have numbers differing by any
integer but M, they have zero inner product, since their two M-element halves are
orthogonal. Otherwise, the first M components of the rows coincide, while the rest of
the components are opposite, which again gives zero inner product.

To make use of the Sylvester algorithm one can start with matrix

11
meli ]

which is evidently a Hadamard one, and construct Hy (using the symbols ‘+’ and ‘-’ in
place of +1 and —1 for brevity), then from Hy produce Hg, and so forth:

+ + + +
H_[Hz Hz}_-f———i——
Tl - + + - -

+ - - +
[+ + + + + + 4+ +]
+ -+ - + - + -
+ + - - + + - -
Ho— |He He| 4+ — — + + — — +
®7 |Hs —Hy + + + + - - = -
+ -+ - - 4+ - +
+ + - - - - + +
+ - - + - + + -]

Thereby a Hadamard matrix of any order M = 2" (2, 4, 8, 16, 32, ...) can be built up.
Rows of Hadamard matrices of this kind are also known as Walsh functions.

Figure 2.12 shows baseband orthogonal BPSK signals (2.50)—Walsh functions—
generated with the aid of Hadamard matrix Hg.

Figure 2.13 illustrates that within this signalling mode there is no resource distribu-
tion: all signals share the common resource, fully overlapping in both the time and
frequency domains. Indeed, the bandwidth of each signal is estimated as W = 1/A while
duration T = MA, thus producing WT = M = W, T,. Orthogonality is now achieved at
the cost of an appropriate signal modulation, rather than either time interval or
bandwidth fragmentation.

Analysing the benefits of spread spectrum orthogonality, one can note that methods
of generation and processing of signals (2.50) are quite well matched to modern digital
microchip circuitry (ASIC, VLSI, microprocessors). Another factor is the automatic
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Figure 2.12 Baseband Walsh functions
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Figure 2.13 Resource allocation in orthogonal spread-spectrum signalling

acquiring of those merits of the spread spectrum which cannot be seen directly within
the classical reception framework but are numerous and very valuable in practice (for
details see Chapter 3). This gives an explanation of the great popularity of orthogonal
signalling of this sort in advanced telecommunication systems (e.g. cdmaOne, UMTS,
¢dma2000; see Chapter 11).

Now the moment has come to draw an overall conclusion on the results of Sections
2.5-2.7. As one may see, theoretically the classical M-ary transmission problem does
not lean implicitly towards the spread spectrum, and in principle optimal signals can
be realized as plain ones. On the other hand, there are implementation reasons,
along with the desire to gain the numerous advantages pertaining to spread spectrum
beyond the classical reception model. Because the latter opportunity is potentially
promised by a large total necessary time—frequency resource W,T, > 1, this can
incline a system designer to prefer spread spectrum signals to plain ones.
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2.8 Signal parameter estimation

2.8.1 Problem statement and estimation rule

Everywhere in radio systems we encounter the problem of signal parameter measurement
or estimation. It describes any situation when information which is interesting to an
observer is carried by a current value of some signal parameter (e.g. amplitude,
frequency, initial phase, time delay etc.). Therefore, to extract necessary information
the observer needs to measure or estimate the corresponding parameters.

Let us turn to some transparent examples. In conventional AM (FM) broadcasting,
dependence of amplitude (frequency) on time carries audio information: the volume
and pitch of a tone. To restore the audio message and give it out to the listener,
instant values of the amplitude (frequency) should first be measured and reproduced
as a continuous-time waveform. Another similar example is conventional analog TV,
where both amplitude and frequency are involved in information transmission. To
restore colour moving images amplitude measurement should be performed, since the
luminance and chrominance components are broadcast via AM, while audio transmis-
sion is accomplished via FM and, hence, in any TV receiver frequency measurement is
present.

Another parameter estimation task is found in the synchronization or timing prob-
lem, where time—frequency mismatch between the received signal and a local reference
clock should be measured to synchronize the second with the first. This procedure is
characteristic of a great number of systems, ranging from TV horizontal and vertical
synchronization channels to pilot channels of 2G and 3G mobile radio.

Numerous estimation problems are typical of radar and navigation: measurement of
time delay and signal arrival direction provides knowledge of the mutual distance and
angle coordinates between a receiver and a target; if knowledge of a target velocity and
manoeuvre is necessary Doppler frequency shift should be measured etc.

The list of examples could easily be continued, since parameter measurement is an
integral part of practically any system in which information is transmitted, recovered
and processed.

In terms convenient for our context, the parameter estimation problem may be stated
in the following manner. The observation y(¢) along with noise contains the signal
s(t; A), which is deterministic except for the unknown constant value of the parameter
A. The latter may be a vector or a scalar, depending on the specific situation. The
observer, based on the analysis of y(7), should produce a decision on what value, within
the range of possible ones, is taken by the signal parameter in question. This decision, in
association with the problem itself also called estimate, is denoted by A. Since noise is
always present in y(¢), in any separate session of reception  differs from the unknown
true value of the parameter A, and the question is how to make the optimal decision,
which guarantees the smallest harm caused by this discrepancy.

The simplest clue to this issue may be found in understanding that in principle the
estimation problem is not anything radically new with respect to the problem of
distinguishing M signals studied in Section 2.3. In fact, suppose at first that a parameter
A to be measured is discrete and takes one of M competitive values A\j, A, ..., Ay. Then
the decision about which of these possible values is assumed by a signal parameter in
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this specific observation is nothing more than just determining between M hypotheses
on which of M competitive signals s(¢), 52(2), ..., sp(¢) is being received, where the
signals are just copies of s(z; \), differing from each other only in value of parameter
A:si(f) = s(t; Mp). To cover the case of a continuous parameter A with this reasoning too,
one can just imagine an infinite (up to uncountable) number M of the parameter values
and, consequently, of the signals to be recognized.

The conclusion from these arguments is that the already well-known optimal decision
strategy, the ML rule, remains applicable to the parameter estimation. This means that
among all competitive values of A the one should be picked as the estimate A which
maximizes the probability of transforming the sent signal s(¢; A) into the observed wave-
form y(#) at the channel output. For the AWGN channel this rule is equivalent to the
minimum distance one, which, rewritten in the current designations, looks as follows:

d(ss,y) = m/\in d(sy,y) = A is given out (2.54)

where s, is vector notation of signal s(¢; A). This rule produces the maximum likelihood
estimate A by finding the value of A under which signal s(¢; A) is closest to the observa-
tion y(¢) by the Euclidean distance. Figure 2.14 gives an illustration of it. The signal
s(t; A) may be thought of as a vector s), which moves, tracing the changes of the
parameter A. Its extreme point travels along some trajectory, points of which map
one-to-one to specific values of A (Figure 2.14a). The point of the trajectory closest to
the observation vector y is found according to rule (2.54) and the corresponding value of
A is announced as the estimate, which is also seen in Figure 2.14b, showing the
dependence of the distance between the observation and the signal copy on the value
of X. The ML estimate A is the parameter value minimizing this distance.

All signal parameters can be categorized as energy or nom-energy ones, the terms
reflecting whether the parameter affects signal energy. If A is of the second type, the
energy of the signal s(#; A) does not depend on the value of A:

S(Ndr=E

&=
=
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8\8

d(s,y)

(a) (b)

Figure 2.14 Illustration of ML estimation
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Amplitude and duration, for example, are energy parameters, whereas time delay,
frequency and initial phase are non-energy ones. It should be clear now that estimation
of a non-energy parameter is the particular case of the problem of distinguishing
between competitive signals of equal energies, for which correlation rule (2.8), in the
new designations, can be presented as:

z(A) = maxz()\) = A is given out (2.55)

or

A=arg max z(A)

where according to (2.7):
T
20 = (1) = [ 2056 0 (2.56)
0

is a correlation between the observed waveform y(r) and the signal s(#; A) in dependence
on the value of the measured parameter \.

In the light of the physical content of the correlation, the estimation rule (2.55) has
quite a transparent interpretation: the ML estimate A is the value of A under which
signal s(¢; \) has maximal resemblance with the observed waveform y(¢).

2.8.2 Estimation accuracy

Let us recollect now the fact discussed in depth in Sections 2.2-2.3 that the fidelity
of signal distinguishing is critically governed by the correlation coefficient (2.14). In
the case of parameter estimation, signals to be distinguished are just copies of s(; \)
with different values of A. In many practical situations the correlation of any two such
copies s(; A1), s(t; A) depends only on their mismatch in A, i.e. the difference A\, — A,
rather than on values Aj, A\, separately, so that putting A\; =0, , = X leads to the
following representation of the correlation coefficient (2.14) for the case of non-energy
parameter A:
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As is customary for a correlation coefficient, this entity characterizes the resemblance of
two signal copies depending on their mismatch in the parameter A. It is evident that
p(A) < p(0) = 1, which has an instructive implication: signal copies mismatched in A can
not be more similar to each other than fully identical ones, which have, in their turn,
unity correlation. Another property of the quantity (2.57) induced by its dependence on
only A = \y — A is evenness: p(A\) = p(—N).
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Figure 2.15 Typical curves of p()A) in dependence on A

Figure 2.15 gives example curves of p(\) in dependence on A for two hypothetical
signals. The solid curve is flatter than the dashed one, which means that the first signal is
less sensitive to changing A: the resemblance between its copies mismatched in A is
higher than that between copies of the second with the same mismatch.

Now it is necessary to stress one detail, which was deliberately omitted above. As a
matter of fact, one or another decision rule is always optimal only in some strict sense
specified by an optimality criterion. The ML rule referred to here is optimal in the sense
of the minimum probability of error criterion, which is quite natural and adequate when
discrete signals are distinguished or a discrete parameter is measured. But it does not
look that adequate when a continuous parameter is measured. It seems much more
reasonable in this case to characterize estimation fidelity by a precision, i.e. magnitude
of deviation ¢ = A — \ of estimate A from the true value of \. First of all, it looks quite
normal to require that expectation of error £ over all possible observations y(z), true

value ) fixed, be zero for any ), i.e. that estimate A be equal to the true A on average:

E=A—A=0sA=)\VA (2.58)

An estimate meeting this condition is called unbiased. But fulfilment of (2.58) does not
yet allow us to consider the estimate good, since the magnitude of random scattering of
the estimate around the true value is of critical importance. The variance of error

var{e} = ()1 —\)? is a traditional and very adequate measure of this scattering, and
seeking for the rule providing unbiased estimate with minimal var{e} over all true X:

var{e} = (A — A\)? = min \2)

would be highly justified. Thus, minimization of variance of unbiased estimate is a
natural way of pursuing greatest measurement accuracy.

In estimation theory the fundamental Cramer—Rao bound is proved bordering the
variance of any unbiased estimate from below. An estimate whose variance lies on this
bound is called an efficient one. ‘Purely’ efficient estimates are rather infrequent but this
is not a big problem from the application standpoint. The matter is that the ML estimate
is asymptotically unbiased and efficient as it is again established in classical estimation
theory. Physically the term ‘asymptotically’ means ‘in situations where high measure-
ment accuracy is necessary’, or, to put it even more practically, when sufficiently high
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SNR or observation time is provided. Therefore, in any task where high accuracy is
wanted, the ML rule is optimal not only by the error-probability criterion but also by
the estimate accuracy criterion. Certainly, in the real world, high measurement precision
is a typical demand and this is why the ML estimates are extensively used.

For the case of non-energy parameter A the Cramer—Rao bound acquires on
especially simple form and provides a practical tool to calculate the ML estimate
variance:

var{A} = var{e} ~ — -

P"(0)g?

The presence of SNR ¢?> = 2E/Nj in the denominator of the right-hand side of (2.59) is
no surprise: naturally, for any reasonable estimation rule the greater is SNR, the smaller
is the error and the higher is the measurement precision. At the same time, the depend-
ence on the second derivative of a correlation coefficient deserves a more extensive
comment. As is well known from mathematical analysis, the second derivative describes
the curvature or sharpness of a function at the examined point and for a convex curve is
negative. The sharpness of p(\) at zero point, in its turn, shows the sensitivity of a signal
towards mismatch in A: the sharper it is, the faster a signal copy mismatched in \ loses its
resemblance to the initial copy. Recollect now that estimation is a particular case of
signal distinguishing and is the more reliable the smaller the signal similarity is. This gives
a complete explanation as to why p”(0) may affect the precision of measuring A: when
copies of s(¢; \) have low resemblance even with close values of A, they are more easily
distinguished in comparison with the case of their stronger similarity.

The latter fact points at the general trend of signal design in problems of non-energy
parameter \ estimation. To achieve the desired result not at the cost of just ‘brute force’,
i.e. energy increase, one may try to find signals with a steep dependence of correlation
coefficient p(\) on A.

In the following sections we turn to concrete estimation problems, among which
examples of measuring both energy and non-energy parameters are considered. The
main idea remains as before: to find out where estimation problems may call for the use
of spread spectrum.

g>1 (2.59)

2.9 Amplitude estimation

The problem of measuring signal intensity (level, power) may be encountered in numer-
ous applications, from TV broadcasting to digital PAM or QAM data transmission and
mobile radio. Let us set it as the problem of measuring unknown amplitude 4 remaining
constant during the observation interval [0, T']. In this statement the following signal
model can be assumed:

s(t; A) = As(t)

where s(f) is some deterministic reference signal whose amplitude is equal to one by
convention. Then signal s(¢; A) is the result of scaling the reference signal by an
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unknown factor 4. Let E be the energy of the reference signal. Then the energy E(A) of
the signal with amplitude 4 and its correlation z(A4) with observation y(z) are:

T T T

$S(t;4)dt = s?(t)dt = A’E z2(A) = [ y()s(; A)dt = Az
e freness] /
where
T
z= /y(l)s(l) dr (2.60)
0

is the correlation of the observation with the reference signal.

Turning to the correlation version of minimum distance rule (2.8) and noticing that
the roles of E; and z; are now played by E£(A4) and z(A4), respectively, the ML estimation
procedure may be treated as maximization of the difference z(4) — E(A4)/2 in A. Using
the equations above, this difference takes the form of a quadratic binomial 4z — 4%E/2
in A with the known coefficients. Its maximum is easily found, producing the ML
estimate of amplitude:

z
E
Thus, calculating a correlation of the observed waveform with the reference signal and

scaling the result by the constant 1/E is exactly the desired optimal amplitude estimate.
After finding the expectation of z from equation (2.60):

A:

T T

0/ :/(tA A/s2 1)dt = AE

0

it is readily seen that on average A4 strictly coincides with the true value of the amplitude,

A =z/E = A, meaning that the ML estimate of amplitude is rigorously (not only
asymptotically) unbiased. No more difficult is the evaluation of variance of A:

var{z} No 1 (2.61)

var{/i} =~ T3p= 7

where result (2.15) is used and ¢ is SNR for the reference signal (i.e. for a signal having a
unit amplitude). It may be shown that (2.61) strictly reproduces the Cramer—Rao bound,
proving rigorous (not only asymptotic) efficiency of the ML estimate of signal amplitude.
This rare case of an estimate’s rigorous optimality is associated with the energy nature of
amplitude and will not be met later when non-energy parameters are considered.

Now, what sort of demand does amplitude measuring impose on signal design? As
(2.61) demonstrates, nothing but sufficient energy exhaustively determining estimation
precision. No complications of the signal modulation law are able to improve amplitude
measurement accuracy if they do not govern the signal energy. Consequently, no
momentum to the involvement of spread spectrum appears in connection with this
classical reception problem.
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2.10 Phase estimation

We now address the situation where the parameter carrying useful information is the initial
phase of the signal. This case is typical of coherent radar and navigation receivers, carrier
reference recovery loops of PSK/QAM data transmission links, demodulators of 2G and
3G mobile radio receiver, chrominance channels of TV and many more applications.

We modify the bandpass signal model (2.24), separating the constant (during obser-
vation interval) initial phase ¢, which is unknown and to be measured:

s(t;) = S(1) cos(2nfot + (1) + )
Since ¢ is a non-energy parameter, E(p) = E and ML estimation of phase consists in
maximizing z(y) = fOT y(t)s(t; @) dt over all ¢ € [—m, 7]. To make use of equation (2.59),
note that by definition p(y) is the cosine of the angle between two signal copies phase-

shifted by ¢; that is, between two vectors separated by the angle . Therefore
p(p) = cosp, p"(0) = —1 and variance of the ML estimate ¢ is:

. 1
var{g} ~ >
Again, in common with amplitude measuring, precision of phase estimation is governed
only by SNR. Thus, this classical problem is also indifferent to the signal modulation
law, whenever signal energy is maintained constant, and does not stimulate spreading a
signal spectrum.

2.11 Autocorrelation function and matched filter response

Spread spectrum theory rests to a very large extent on the notion of a signal autocorrel-
ation function (ACF), which is defined as the inner product of two copies of the same
signal time-shifted to each other by 7 seconds:

R(7) = (s0.8,) = / s(0)s(t — 7) de (2.62)

Signal time delay 7 is a non-energy parameter (E(7) = E) and scaling (2.62) by E~!
produces normalized ACF, which is simply a correlation coefficient of the time-shifted
signal copies:

_ (s0,87) _ (s0,87) 1 DOS ot —
plr) = ) = 20 EZ (1)s(t — 7)de (2.63)

Clearly, the latter shows how rapidly the likeness of the signal time-spaced copies dies
away with the delay mismatch 7. According to the general properties of a correlation
coefficient p()\) indicated in Section 2.8, ACF is an even function of 7, attaining its
maximum at zero point:

R(7) < R(0) = E, R(7) = R(=7) & p(7) < p(0) = 1, p(7) = p(—T) (2.64)



44 Spread Spectrum and CDMA

Using equations (2.39) and (2.34) it is not difficult to verify that for any bandpass signal
(2.37) ACF:

R(7) =Re [R(;) exp(ijfot)} ,p(1) = Re[p(7) exp(2nfot)] (2.65)
where
R(1) = (So,S,) = / S()S*(t —7)dt (2.66)

is the ACF of the complex envelope S(), or, in other words, the modulation law. The
normalized version of ACF (2.66):

"’(T):(TS’F):(SZ’;T)Zﬁ [ w8 (.67)

—00

being the correlation coefficient of two time-shifted copies of the complex envelope S(7),
serves (after taking the modulus) as a measure of the rapidness with which the time-
shifted modulation law loses similarity with the initial one when the mismatch 7 grows.
As may be seen from (2.65), ACF p(7) of a bandpass signal s(¢) is a bandpass signal itself
whose modulation law is ACF p(7) of the complex envelope of s(¢). In particular, the
real envelope po(7) of ACF of s(7) is the modulus of p(7): po(7) = |p(7)|, which is
illustrated by Figure 2.16.

Any ACF can be obtained physically as an output of the correlator, i.e. the device
running the straightforward operations set up by definitions (2.62) or (2.66). In this case
calculations for a range of 7 are fulfilled point by point, i.e. repeatedly in time or in
hardware. An alternative solution is the matched filter, i.c. a linear system with the pulse
response reproducing a mirror image of the signal: A(f) = s(T — t), where T is, as usual,
signal duration and an immaterial proportionality factor is set to be one. This filter
emerges every now and again as an integral element of an optimal receiver in the
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Figure 2.16 Bandpass signal ACF
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AWGN channel, but its optimality often goes far beyond this specific channel model. In
particular, it maximizes output SNR among all linear systems, signal given. In our
current context the matched filter is important due to its ability to calculate and
reproduce ACF as a real-time output waveform. To examine this, apply the signal s(¢)
to the input of the filter matched to s(¢). The filter response () may then be calculated
as the convolution integral:

r(t) = / s(O)h(r — 0)dl = / s(0)s(T —t+0)do

- / SO)s[0 — (1 — T)]di = R(t — T) (2.68)

—00

and duplicates the ACF in real time with predictable delay equal to the signal duration.

To elucidate what was said, consider Figure 2.17. The rectangular baseband
pulse s(¢) of duration 7T (Figure 2.17a) has a triangular ACF R(7) of duration 27T with
a maximum at the zero point (b, dashed line). In accordance with equation (2.68) the
matched filter response reproduces a copy of this ACF delayed by the signal duration 7’
so that maximal voltage at the filter output occurs at the moment when the input
signal ends (b, solid line). If the pulse were bandpass with a rectangular envelope s(?),
its ACF would be a triangular bandpass pulse (c, dashed bold line) and its
T-delayed copy would appear at the bandpass matched filter output (c, solid bold line).
The maximum of the filter response to the signal the filter is matched to always occurs
at the moment of signal ending (at least no earlier), since this filter processes the
whole signal. It is very instructive to note that for a bandpass signal moments of
maximal envelope and maximal value of carrier cosine at the matched filter output
always coincide, since ACF always assumes its maximum at the zero point (see also
Figure 2.16).
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Figure 2.17 Illustration to the definition of ACF and its forming by the matched filter
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2.12 Estimation of the bandpass signal time delay
2.12.1 Estimation algorithm

The problem we address in this section is among the most frequently encountered. It is
typical of TV broadcasting (synchronization channels), digital mobile radio (pilot channels,
timing recovery loops), radar (target distance measurement), space-based and ground-
based navigation (beacon distance measurement) and so forth. To operate adequately,
practically any modern information processing system needs to retrieve timing data from
the received waveform, and this is exactly what is meant by time delay estimation.
Suppose that a bandpass signal (2.37) s(f) = Re[S(7) exp (j27/yt)] passing through the
channel acquires unknown time delay 7 and initial phase ¢y, i.e. takes the form:

s(t;7500) = s(1 — T300) = Re{S(t — 7) expli2nfo(r — T) + jipol }

In many situations phase ¢, is random and uniformly distributed over the interval [—, 7],
i.e. it has no bearing on the only object of interest—the time delay 7. Let us incorporate
the phase component caused by delay 7 into the integral initial phase ¢ = —27foT + o.
The latter, remaining random and uniformly distributed over [—, 7], is again independ-
ent of 7, i.e. contains no information on it due to the destructive contribution of ¢y. Then
the received signal may be represented by the following:

s(t = 73¢) = Re[S(1 — 7) exp(j27/o1) exp(jp)] (2.69)

where time delay 7 is an unknown useful parameter to be measured and ¢ is a useless
initial phase, whose uncertainty may only complicate the measurement of .

As was stated in Section 2.8, any estimation procedure is a particular case of signal
distinguishing. In the case in question, we need to distinguish between multiple copies of
signal (2.69) that differ from each other by value of the time shift 7, a nuisance param-
eter—initial phase p—being an extra care. Fortunately, there is a straightforward way to
overcome the signal indeterminacy related to the randomness of ¢: in Section 2.5 it was
shown that optimal choice between noncoherent signals is performed by distinguishing
between their deterministic modulation laws, i.e. complex envelopes. In the delay estima-
tion, consequently, time-shifted copies of the signal complex envelope S(¢) should be
compared and one of them declared received. It is the time shift of the latter which is given
out as the ML estimate 7 of time delay. Certainly, preference for this copy over the rest is
based on its minimum distance from the received complex envelope Y(7) or, taking into
account that time delay is a non-energy parameter, on maximal correlation with Y (7).
This correlation is evaluated by correlation modulus (2.47), which can be rewritten taking
into account that the role of the signal number now belongs to the value of 7:

T
Z(1) = / Y(0)S (1 — 7)dr (2.70)

0
Based on this entity estimation rule Z(7) = max Z(7) is absolutely transparent physic-

ally: the ML estimate 7 is just the time delay under which the signal modulation law has
maximal resemblance with the observed one.
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Figure 2.18 Correlator-bank implementation of the ML estimate of time delay

One possible solution to implement this estimation rule is a bank of correlators,
shown in Figure 2.18. The observed complex envelope is processed in parallel by M
correlators, whose reference signals are time-shifted copies of the signal complex envel-
ope. At the correlator outputs values of Z(r;),i =1, 2,..., M are present, and the
rightmost block compares them to select the largest. The ML estimate is the delay of
the reference in the correlator whose output is maximal.

Of course, this structure treats the time delay as though it takes only discrete values.
When this is not the case it simply quantizes continuous 7 and the number of correlators
(or, which is the same, discrete values 7;) should be chosen sufficient to make the
quantization error tolerably low.

The matched filter offers an alternative version of delay estimator. Let the observa-
tion y(f) be applied to the filter matched to the signal s(¢). Find the output waveform r(¢)
using the convolution integral and filter pulse response /(¢) = s(T — 1):

oo o0

H(f) = / YOVt — 0)do = / Y(O)s(T — 1 + ) do.

—00 —00

This integral, being the inner product of y(¢) and s(T — ¢ + #), may be calculated with
the aid of equations (2.39) and (2.34):

oo T

r(t) = /y(G)S(T—tJrH)dt?:%Re /J’;(H)S*(T—Hr@)d@

—00 0

T
—Re{ | / Y(0)S'(T — 1 + 0)d0 - exp(—2n/oT) | expli2nfor)
0

Comparing this result with the general bandpass signal model (2.37), one can see that
the square brackets single out nothing but the complex envelope at the filter output.
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Figure 2.19 Matched filter implementation of the ML estimate of time delay

Therefore, the real output envelope (amplitude modulation) defined as the modulus of
the expression within the square brackets:

% / YO)ST0— (1— T)do| = %Z(z _ 7 2.71)
i.e. replicates in real time (with immaterial scaling by a factor 1/2) a copy of the
correlation modulus (2.70) time-shifted by the known signal duration. This points
directly to the possible structure of ML estimator of delay 7 shown in Figure 2.19a.
The observation y(¢) is first filtered by a matched filter and then passes through the
envelope detector. The last unit in the structure registers the time moment #,, when the
detector output waveform r,(¢) takes a maximum value and the desired ML estimate 7 is
obtained after subtraction of the known constant 7 from ¢,, (Figure 2.19b).

The scheme of Figure 2.19 seems more transparent for explaining the idea, but many
practical software-based ML estimators may appear not so directly identifiable with
either of the two structures just discussed.

2.12.2 Estimation accuracy

According to equation (2.59), the variance of estimation of 7 depends on the steepness
with which the time-shifted signal copy loses its similarity with the initial one. But in the
case of random-phase signals only the deterministic complex envelopes are being com-
pared to carry out the ML estimate. The similarity of time-mismatched copies of the
complex envelope is characterized by the envelope of the signal ACF (2.65):

i) = 16(0) = |5 [ S0 (0= yer (2.72)



Classical reception problems and signal design 49

r,d(t)

Figure 2.20 Illustration to the time measuring accuracy

and therefore its steepness should affect the error variance of measuring time delay, which
can be strongly argued on physical grounds. Indeed, as is seen from equations (2.70) and
(2.71), ACF modulus (2.72) is the noise-free envelope at the matched filter output (neglect-
ing constant factor) taking a maximum value at some ‘true’ time-position 7, (Figure
2.20a, solid line). When noise is added the time-position ¢, of this maximum fluctuates
with respect to the true point (Figure 2.20a, dashed line) spanning the range depending on
the sharpness of the signal envelope at the filter output, i.e. of the ACF modulus (2.72).

To make the latter more evident, note that fixing the moment of a maximum of the
detector output r4(¢) is tantamount to registering the time-point where its derivative r/,(f)
crosses the zero level (provided it is selected properly against spurious ‘zero-points’
caused by possible side maximums). This is illustrated by Figure 2.20b. When SNR is
high enough, deviation € = 1,, — 1,0 is small and we may assume that the noisy (dashed)
curve r/(¢) is linear within the range [f0, #,»], having the same slope as the noiseless
(solid) curve has at the point ¢,,9. Hence, solving the right triangle seen in Figure 2.20b,
¢ can be found as a result of division of its dashed-dotted leg by the steepness of the
noiseless curve r/,(f) at the point #,,, i.e. by the second derivative #(z,,). The latter, in its
turn, is exactly p;(0), so that e ~ r/,(#,,0)/py(0). On the other hand, variance of scattering
of ¥,(t,0) around the noiseless zero value is greater the smaller is SNR and the higher is
the rate of random change of the noisy detector output r,(f) (dashed line in Figure
2.20a). The sharpness of ACF of a random process tells us about the rate of its change,
and ACF of the detector output random process under high SNR repeats the envelope
of ACF at the detector input. The latter envelope, when the filter is matched to the
signal, is nothing but the envelope py(7) of the signal ACF. Since the sharpness of any
ACF is measured by its second derivative at zero point with a minus sign, the variance of
r!)(tmo) is proportional to —p(j(0). Then:

var{rl;(tmo)} 1
o)) —r0)

var{e} =

is inversely proportional to the sharpness of the signal ACF —p;(0) as was predicted
earlier and as follows from the Cramer—Rao bound (2.59).

We thereby came to quite an important conclusion: time-measurement accuracy is
critically governed by the signal ACF sharpness, and the sharper is ACF, the smaller is
the variance of the ML estimate of time delay 7.
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In parallel with —pfj(0), another indicator of signal ACF sharpness can be introduced,
which we will call the correlation spread and denote 7.. This parameter characterizes
signal ACF width (see Figure 2.20a) and—Ilike duration or bandwidth—should be
defined by a convention, since ACF can be of rather complicated shape and fall to zero
only asymptotically. In the light of the meaning of ACF, we believe that signal copies (or
copies of the complex envelope) with mutual time-shift 7 < 7, have significant resem-
blance while with 7> 7, their resemblance is negligible. It is clear that the conclusion
above may be reformulated in terms of this new entity: signals with narrow ACF, i.e.
small correlation spread, are generally preferable for the high precision of time-delay
estimate.

Continuing, we may recall one of the basic facts of spectrum analysis following
directly from result (2.72) after applying the Parseval theorem to it: signal ACF and
energy spectrum are related to each other by the Fourier transform. In terms of the
complex envelope:

o]

wr) =55 | [ 300 expiizarr)or

—00

where the complex envelope spectrum S(7) is physically (neglecting a proportionality
coefficient) a bandpass signal spectrum moved to the baseband area. Then according to
the general Fourier transform property, 7. &~ 1/W, or in other words, the narrower is
ACEF the wider is the signal spectrum and vice versa. The implication of this is straight-
forward: a possible way of improving time-measurement accuracy consists in employing
signals with a wide spectrum. To come to the same conclusion formally, one may
differentiate the last expression of the ACF envelope and substitute the result into the
Cramer—Rao bound (2.59). With some tedious work, this leads to the equation often
referred to as the Woodward formula:

. |

where the signal root-mean-square (rms) bandwidth is introduced:

Wons = 57 7 IREGIRY

It may appear difficult to understand why a measure like this reports about the spectrum
width. In this case analogy with the more customary probabilistic scattering parameter
is advisable. Variance of the random variable x with zero mean and PDF W(x) is by
definition var{x} = ffcoo x> W (x)dx, characterizing a scattering range of x around its
expectation, or, which is equivalent, width of PDF W/{(x). But the normalized energy

~ 2
spectrum ‘ S(f)| /2E is non-negative and satisfies the condition:
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/oo “S’(f)‘zﬁE} df = 1

i.e. may be treated as a PDF of some appropriate random variable. Then W, is a
measure of scattering of this ‘dummy’ random variable, and by that characterizes the

~ 2
width of an energy spectrum ’ S(f )’ .

Thus, roughly speaking, the criterion for good signals in time-measurement tasks is:
signals with short ACF (small correlation spread 7.) or, equivalently, wide bandwidths
W, are of the primary interest. Compared with the previously considered two estimation
problems the situation looks pretty new: there exists a sustainable resource to improve
estimation fidelity beyond a brute-force course, i.c. just extra energy expenditure.

It should be stressed now that ‘wide band’ and ‘spread spectrum’ are not synonyms.
As a matter of fact, if conventions adopted on the correlation spread 7, and the signal
duration T definitions are sound enough, signal copies shifted by more than T are
practically non-overlapping, i.e. have negligible inner product or resemblance. There-
fore, 7. < T, showing that shortening signal ACF and, consequently, widening its
bandwidth can be achieved trivially by shortening the signal itself.

However, going this way one should not forget that SNR depends on signal energy
E = k,PT where P is the signal peak power and k, is a coefticient determined by the
signal shape. It has to be clear that preserving SNR when the signal is being shortened
requires a proportional increase of peak power. Consequently, in the pursuit of higher
and higher precision, it is possible to arrive at the situation where the necessary peak
power becomes prohibitively large. Generally, very high transmitted power entails large
mass and dimension of transmitter equipment and an energy source. In addition to that,
short high-power pulses may appear substantially damaging for neighbouring systems
and the surrounding ecology.

A more elegant way of improving the time-measurement accuracy is prompted by the
fact that signal shortening is not the only method of widening the spectrum or, which is
the same, reducing the correlation spread. Consider a signal whose duration 7 is large
enough to provide necessary energy, i.e. SNR, in combination with acceptably low peak
power P. Suppose that the internal angle modulation law is found, making a signal
correlation spread much smaller than signal duration: 7. < T'. Then, signal ACF is sharp,
providing high-accuracy estimation of time delay, despite the long duration of the signal
itself. But in the light of the dependence between the correlation spread and the bandwidth
T. = 1/W inequality 7. < T means that the signal has a large time—frequency product
WT > 1, ie. it is a spread spectrum one. Putting it another way, involvement of the
spread spectrum allows the contradiction between peak power and estimation precision to
be removed: necessary energy is put into a signal at the cost of duration, not power, while
high measurement accuracy is achieved by designing an appropriate modulation law.

Physically, fulfilment of the condition 7. < 7 means that a long signal becomes short
after processing in the matched filter of the estimator shown in Figure 2.19a. It should
be clear that this matched filter time-compression phenomenon is achievable only
with spread spectrum signals. In principle, any signal may be time-shortened in some
purposely designed (generally mismatched) filter, e.g. an equalizer, but for plain signals
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the price of this is loss in SNR, and only spread spectrum signals promise best ‘noise-
clearance’ simultaneously with the time compression. At the same time it has to be
understood that the spread spectrum condition WT >> 1 is just the necessary one, and
finding signals combining long proper duration with a sharp ACF is a rather sophisti-
cated task. There is further discussion of this in Chapter 5.

Consider Figure 2.21 where waveforms are shown simulated by Matlab. The plots in
column (a) present, respectively, a plain bandpass bell-shaped pulse, matched filter response
to it (delayed ACF) and 10 superimposed noisy realizations at the detector output. The
plots of column (b) show similar waveforms but for the spread spectrum signal, which is a
linear-frequency-modulated pulse having the same shape, duration and energy as that of
column (a). The time-compression effect for case (b) manifests itself clearly and results in a
noticeably narrower range of fluctuations of the time position of a maximum at the detector
output in comparison with case (a). This demonstrates convincingly how spread spectrum
can improve time-measurement accuracy without compromising peak power.

We now formulate the following conclusion. When no peak power limitation is
imposed, the classical problem of time-delay estimation does not appeal strongly to the
spread spectrum. However, spread spectrum is an imperative demand when tough peak
power constraints need to be obeyed. Note in passing that the latter situation is quite
typical of the pulse radar, which explains why this application area has for decades been
stimulating the development of spread spectrum technology.

s(1)
s()

Noiseless MF output
Noiseless MF output

MF output envelope
MF output envelope
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Figure 2.21 Illustration of time estimation and matched filter time-compression effect
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2.13 Estimation of carrier frequency

Consider now the situation where signal carrier frequency is an unknown informative
parameter. This problem is as widespread as the previous one. It is met in radar
measuring target velocity via Doppler frequency shift (e.g. police radar for road traffic
monitoring), reference recovery loops of 2G and 3G mobile telephone receivers, auto-
matic frequency control system in FM and TV receivers and so on.

In actual practice it is typical that only bias F versus the carrier frequency nominal
value f has to be measured, whereupon a signal model can be written as:

s(t; F; ) = Re{S(t) expli2n(fo + F)t + jip] } = Re[S(1; F) exp(j2nfor) exp(jo)]

where S(1; F) = S(7) exp (j2nFr) is the signal complex envelope including the linear phase
drift due to the frequency shift F, and ¢ is again a nuisance parameter—random initial
phase containing no information on F.

Because of the non-energy nature of F, the correlation rule Z(F) = max Z(F) is

relevant, where the correlation modulus Z(F) is again produced by a slight adaptation
of (2.47) with F playing the role of k:

Z(F) = /Y(I)S*(I;F)dt = /Y(t)S*(t)exp(fj%rFt)dt
0 0

The scheme of Figure 2.18 may be used to realize this optimal estimation if instead
of time-shifted copies of the complex envelope, its frequency shifts
S(t; Fy) = S(1)exp (j2nFit), k=1,2,..., M are used as correlator references. On the
other hand, it is seen from equation (2.71) that the amplitude at the output of the
matched filter, which is tuned to the frequency fy + Fj, takes a value Z(Fj) (neglecting a
coefficient) at the moment of signal ending 7. Thus, an alternative structure (see Figure
2.22) may be used containing a bank of M matched filters, the kth one being detuned
with respect to the nominal frequency fy by Fy Hz. After amplitude detecting and
sampling of detector outputs at moment 7, the set of Z(F}) is obtained, the largest of

Matched .| Envelope 4./5»/,7
filter F, detector i
y(©) _| Matched _| Envelope | » Selection P
3 filter F, 7| detector 4.?/ ”””” > of largest
_| Matched _| Envelope 4’/5‘/
Tl filter Fy, "| detector : M
' Sampling
att=T

Figure 2.22 Matched filter implementation of the ML estimate of frequency
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which is then selected to derive the ML estimate F as a frequency mismatch of the filter
outputting the largest Z(Fy). Clearly, continuous F here is again quantized and the
number of filters M should be sufficient to tolerate the quantization error.

Precision of the frequency measurement in accordance with equation (2.59) is gov-
erned not only by SNR but also by the sharpness of the correlation between frequency-
shifted signal copies in dependence on their mutual frequency mismatch. Due to the
phase randomness, we operate with the complex envelope, and the resemblance between
its frequency-detuned copies S(#;0) and S(¢; F) is characterized by the modulus of the
correlation coefficient (2.44):

wF) = 19(0)| = |5 [ Sw0S e Fyar| = |5 [ 1500 exp(-s2nri) de
- ﬁ / S2(1) exp(j2nFr) de (2.73)

As is seen, this correlation coefficient as a function of F duplicates in its shape the
amplitude spectrum of the signal squared real envelope. Since it is a real envelope, i.e.
the amplitude modulation law is always some baseband signal, it follows from the
Fourier transform properties that the longer is the signal, the sharper is po(F). An
appropriate name for the extension of py(F) along the frequency axes is the ‘envelope
frequency spread’. Denoting it by F, we have from the fact just mentioned F, ~ 1/T.
Thus, beyond the ‘brute force’ way of increasing the signal energy, it is possible to
improve the accuracy of the frequency measurement by employing a signal having a
rather compact spectrum of the envelope (small F,), i.e. sufficiently long duration T.
Formally, this conclusion may be deduced again by evaluation of the second derivative
of p(F) and substituting it into the Cramer—Rao bound (2.59):

1

var{F} =——-—
7 T oms) ¢

where the rms duration 7, characterizes the extension of a signal in time just as rms

bandwidth W, characterizes a signal spectrum extension.

Two physical aspects may be referred to at this point. First, increase of precision with
signal duration 7 is easily understood: frequency is the velocity of a signal complete phase
angle and, like any velocity, is measured more reliably when the angle increment is observed
over a longer time interval. Second, the time—{requency duality shows itself in comparison
of the frequency and time-delay estimates. Indeed, while the time-measurement precision
is governed by a signal extension in the frequency domain (bandwidth W), frequency-
measurement precision is controlled by a signal extension in the time domain (duration 7).

The result above bring us to the conclusion that when the only informative parameter
is a signal frequency there is no momentum to resort to the spread spectrum, since, apart
from the energy, only signal duration is influential as to the estimate accuracy. This
explains why the Doppler speed-monitoring radar very often operates with the plainest
unmodulated CW harmonic signal.
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2.14 Simultaneous estimation of time delay and frequency

Our next subject is the situation where both time 7 and frequency F shifts of the received
signal are unknown and informative, i.e. to be measured. This matches many practical
scenarios. In digital communications, e.g. 2G and 3G mobile radio, a receiving session
typically starts with synchronizing the local reference with the received signal. This
procedure consists of measuring time—frequency misalignment of the local clock against
the received signal and subsequent time—frequency adjustment of the former towards its
synchronism with the latter. In radar technology to measure simultaneously the distance
and the velocity of the target relative to the receiver the signal time delay and Doppler
frequency are estimated. In navigation, e.g. GPS, much the same sort of estimation serves
to measure the user’s own location and velocity. There are many similar examples.

In distinction to the material of Sections 2.9-2.13 the parameter to be estimated is
now the two-dimensional vector A = (7, F) rather than a scalar. Accordingly, the model
of the received signal combines the two of Sections 2.12 and 2.13:

s(t; 7, F; ) = Re[S(t; 7, F) exp(j2nfot) exp(jp)]

where S(t; 7, F) = S(t — 7) exp (j2rF1) is the complex envelope incorporating both the
time delay and the frequency shift; and ¢ is, as before, a non-informative initial phase. It
is obvious that now the correlation rule of estimating 7, F operates with the correlation
modulus:

T T
Z(r, F) = / YOS (7, F)di| = / Y(0)S" (t — 7) exp(—j2nFr)de (2.74)
0 0

which indicates how closely the time and frequency biased copy of the signal complex
envelope S(z; 7, F) resembles the observed complex envelope Y(¢). Finding 7 and F,

which maximize such a resemblance, provides the pair of the ML estimates 7, F:
Z(#,F) = max Z(r, F).

As previously, one can imagine the correlator-bank structure of the ML estimator
where references of different correlators are the copies S(7; 7, F) = S(t — 1) exp (j27F1)
with different values 7, F. More instructive, however, is the matched-filter-based scheme
combining those of Figures 2.22 and 2.19a and illustrated by Figure 2.23. It follows
directly from the comparison of equations (2.74) and (2.71) showing that (neglecting a
constant factor) Z(7, F) is duplicated by the real envelope at the output of the matched
filter, the filter being frequency-detuned by F. M filter-detector branches are taken and
each of them is tuned to its specific frequency, securing thereby estimation of F, while
estimation of 7 is obtained by fixing the point of a maximum value at the detector
output. The ‘Selection of largest’ unit implements both these operations together, fixing
the time moment where the global maximum among the output values of all the
branches occurs. Then this moment itself (after subtracting the signal duration) gives
7, while the frequency tuning of the branch at whose output the global maximum is
registered provides F.

The estimation precision depends on the rapidity with which the resemblance between
the time—frequency mismatched copies S(7;0,0) and S(z; 7, F) of the signal complex
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Figure 2.23 Matched filter implementation of the time delay and frequency ML estimate

envelope decays with growth of 7, F. In other words, the precision is governed by the
sharpness of the modulus of the correlation coefficient (2.44):

. 1ol ,
po(r, F) = |p(7, F)| = |5 / S(1;0,0)8 (;7, F)dt
7.
=35 S(1)S (t — 1) exp(—j2nFt)dt (2.75)

as a function of the two variables 7, F. This function, often called the Woodward
ambiguity function, is crucially important in signal theory. Geometrically it may be
plotted as a three-dimensional surface over the plane 7, F having a maximum equal to
one at the origin: po(7, F) < po(0,0) = 1. Figure 2.24 gives an example view of the
ambiguity function.

When F = 0 signal copies are time-detuned only, and in accordance to it, the ambi-
guity function (2.75) turns into the ACF modulus (2.72): po(7,0) = po(7). On the other
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Figure 2.24 An example of ambiguity function
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hand, with no time shift 7 = 0 signal copies are mismatched in frequency only, and the
ambiguity function becomes the spectrum (2.73) of the squared signal amplitude modu-
lation law: pg(0, F) = po(F). In other words, the signal ACF and squared envelope
spectrum represent profiles of the ambiguity function along the vertical planes
7=0,F =0, respectively. Returning to the structure of Figure 2.23, one may see that
in the case of noiseless observation the kth channel of it reproduces in real-time the
profile of the ambiguity function along the vertical plane F = F;.

As follows from the reasoning above, the only extra-energy-free resource of increasing
the accuracy of the time—frequency estimation is sharpening the ambiguity function. The
latter should die rapidly enough along any direction in the plane 7, F if no material a
priori information about possible values of 7, F is involved. One relevant way to
characterize the sharpness of the po(7, F) is to consider its horizontal section (called
ambiguity diagram) at some predetermined level, e.g. 0.5. Figure 2.25 exemplifies such a
section. Since the extensions of the two basic profiles py(7) and py(F) are measured by
the correlation spread (7. =~ 1/W) and envelope frequency spread (F, ~ 1/T), those
spreads define automatically the sizes of the section along the axes 7, F. Certainly, the
sharper the ambiguity function, the smaller is the square of the ambiguity diagram. The
latter is proportional to the product 7.F, ~ 1/WT, which entails the statement: only
spread spectrum signals allow increasing the accuracy of time delay (frequency) estimation
without compromising the accuracy of measuring frequency (time delay). Indeed, for any
plain signal WT = 1 and, consequently, 7.F, =~ 1, so that making an ambiguity function
sharper along one direction (e.g. 7) is not possible without simultaneously stretching it
along the other direction (F).

With spread spectrum signals the opportunity exists to escape the contradiction
between the extensions 7., F, of an ambiguity function, or equivalently between the
signal duration and bandwidth, similarly to what was studied in Section 2.12. Specif-
ically, an appropriate internal angle modulation secures signal bandwidth W (correlation
spread 7.) and thereby time-measurement accuracy, while the choice of an appropriate
duration T can be carried out independently to guarantee the necessary frequency-
measurement accuracy.

Comparing the statement we arrived at with the previous ones, we see that among
all the classical reception problems examined so far, simultaneous time—frequency
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Figure 2.25 Ambiguity diagram: horizontal section of the ambiguity function
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estimation is the first appealing to the spread spectrum philosophy in an absolutely
categorical way. There are no other means to make the requirements for high precision in
both time and frequency estimations non-conflicting than the involvement of spread
spectrum signals.

2.15 Signal resolution

It is extremely typical of many practical systems that the received signal is actually a
superposition of many copies of the original ‘pure’ signal, each copy having its specific
amplitude, phase, time delay and frequency shift. Time-overlapped, these copies inter-
fere with each other, creating a rather complicated resulting signal and often hampering
the extraction of the necessary information. The procedure directed to separating the
interfering signal copies or neutralizing their mutual harmful effects is called signal
resolution. There may be different ways of treating this problem in terms of the classical
reception approach depending on what the final objectives are. All of them, however,
are again based critically on the category of the signal copies’ distance or resemblance.

To explain the idea better, consider the very indicative case of the time resolution.
Start with the bandpass signal s(r) = Re[S(7) exp (2fy?)] and assume that two of its
copies having equal amplitudes and different time delays 7, = 0, » = 7 arrive at the
receiver input. Then the superposition waveform:

s:(1) = s(t) + s(t — 7) = Re{[S(¢) + S(t — 7)] exp(j27fot)}

is strongly determined by the mutual time shift 7 in comparison to both the signal
duration 7 and carrier frequency as well as by the ‘fine’ details of the signal modulation.
Figure 2.26 illustrates several situations for the example of the plain bell-shaped pulse,
plot a corresponding to the ‘pure’ signal itself, while value 7 for each of the three other
plots is given in terms of the carrier frequency fj.

The case when the time difference 7 is greater than the signal duration 7 (plot b)
causes no problem, since the signal copies are completely separated in time and an

@ e
T=20/fy 7=20/f,

(0) [

T=41fy
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Figure 2.26 Illustration of the time-resolution problem
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observer is able to recognize that there are two of them. Obviously, no interference effect
is present and if, apart from time position, some other signal parameters are of interest
this information may be retrieved from every copy without any major difficulties.

Another matter is the situation where signals are strongly overlapping. Then inter-
ference may lead either to amplifying (if the copies are nearly in-phase, plot c) or
attenuation of the signal (the copies’ phase difference is around 7, plot d). The likely
problems of an observer are clearly seen, considering that the received waveform is
always corrupted by channel noise. He can hardly recognize the presence of more than
one copy (and be fully confident that the interference does not damage the information
retrieved, plot ¢), or meets prohibitively low SNR (d).

Scenarios of this kind are widespread throughout systems related to transporting and
collecting information. The main physical phenomena underlying them are the limited
channel bandwidth and multipath wave propagation. The latter will be discussed in
more detail in Section 3.5. For now it is enough to look briefly at some characteristic
examples. In digital telecommunications two sorts of channel distortion are often
among the most troublesome: intersymbol interference (ISI) and fading. They are some-
what akin, both being the result of the linear summation of the multitude of the
weighted and delayed signal copies. When the range of delays surpasses the signal
correlation spread, or, equivalently, the channel transfer function is explicitly nonuni-
form within the signal spectrum, the received superposition is substantially distorted
against the original signal, which is typical of ISI or frequency-selective fading. Non-
selective or flat fading appears when delays of signal copies differ insignificantly in terms
of the signal correlation spread (the channel transfer function is nearly uniform) but are
sufficient to create destructive mutual phase shifts between copies, causing risk of a
perceptible loss in the resulting signal power. Clearly, the problem of resolution, i.e.
effective separation of the signal time-shifted copies, is directly relevant to the task of ISI
suppression.

Analogously, in radar a set of time-shifted signal copies may enter the received
waveform due to reflection of the emitted pulse by multiple targets. One of the primary
necessary capabilities of radar is to tell how many targets are present on some definite
direction and to measure the distances to all of them. It is immediately seen that the
scenarios described by Figure 2.26b are easy from this standpoint, while the situations
where inter-target distances are small enough to cause overlapping of their echoed
signals (Figure 2.26c, d) demonstrate the essence of the resolution problem.

Multipath propagation is also typical of navigation problems. In many ground-based
systems its nature is attributed to the ionosphere reflecting strongly long and medium
waves. Due to this the earth’s surface and the ionosphere create a waveguide, along
which many alternative propagation modes, i.e. paths, may exist. In space-based sys-
tems the same problem arises, since along with the line-of-sight signal from the satellite
multipath signals caused by reflections from some surrounding objects (e.g. ship masts
or deck erections) may also reach a receiver input. All these situations fall well within the
realms of the resolution problem.

Analysing Figure 2.26, it would seem reasonable to jump to the conclusion that the
appropriate way of achieving good time-resolution consists in employing short signals.
Certainly, shortening a signal may be a solution to the problem; however, the limitations
discussed thoroughly in Section 2.12 remain in force. When pursuing high-resolution
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capability one cannot simply reduce the signal duration; a proportional increase of the
peak-power should also be provided to preserve the necessary SNR. Thus, peak-power
constraints make the potency of this simple strategy not very encouraging.

Fortunately, an alternative and much more elegant way of solving the time-resolution
problem still exists, actually described previously. Just as in the case of time-measurement,
it is the duration of the signal ACF but not of the signal itself that affects resolution
capability, since clearing the signal off the noise by the matched filter may be looked
upon as an integral part of any reception procedure. Consequently, the requirement for a
small correlation spread 7, or sharp ACF is dictated by the time-resolution, duplicating the
one formulated in the problem of time-delay estimation. Putting it differently, the time-
shifted signal copies may strongly overlap and interfere with each other severely, but if their
mutual time shift 7 exceeds the correlation spread 7. they will be observed as non-
overlapping at the matched filter output, i.e. will be resolved. Clearly, we are arriving
again at the idea of Section 2.12: necessary signal energy (SNR) is secured by a high signal
duration T allowing compliance with the peak-power limitation, while the proper choice of
the internal angle modulation is responsible for a sufficiently small correlation spread
7. < T. Then the time-compression effect in the matched filter will be able to provide
separation of the overlapping signal copies; that is, their successful resolution. This is
potentially achievable only with spread spectrum signals, whose time—frequency product
WT ~ T/7. > 1.

Therefore, we may literally cite the conclusion of Section 2.12 in application to time
resolution. When no peak-power limitation is imposed the problem does not appeal
strongly to spread spectrum. However, spread spectrum is a vital demand when tough
peak-power constraints must be obeyed.

Figure 2.27 presents two indicative situations simulated in Matlab. Column (a) shows
the bell-shaped plain pulse s(7), its 7-shifted copy s(¢ — 7) strongly overlapping with s(¢),
superposition of s(¢) and s(f — 7) at the matched filter input and the filter response to
this superposition. Column (b) contains similar plots for the spread spectrum (linear-
frequency modulated) bell-shaped pulse of the same duration and energy. With identical
time-shifts of the copies in both cases the second signal shows excellent resolution
performance—the two signal copies are fully separated—while the pattern with the first
one shows no resolution at all.

The concept developed above for the case of time-resolution may be easily extended
to resolution in other parameters. When several signal replicas with only frequency
shifts differing are overlapping the frequency resolution problem arises, where perform-
ance is affected by the correlation coefficient (2.73) similarly to the frequency estima-
tion. Naturally, nothing urges the use of spread spectrum in this case (see Section 2.13).
If both time and frequency shifts are characteristic of the superimposed signal replicas,
the procedure is the time—frequency resolution and its quality is governed by the
ambiguity function (2.75). As in the case of time—frequency measurement (Section
2.14), this situation appeals to the spread spectrum crucially: no other ways offer the
promise of obtaining a sharp ambiguity function along any directions in the 7, F plane.

To conclude this section, there are also numerous scenarios of space resolution where
signal copies reach the receiving antenna from different directions and the task of an
observer consists in separate processing of each copy. It is the antenna itself
(or antennas, including the transmit one) that then plays the role of a space signal,
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Figure 2.27 Time-resolution problem: the plain (a) and spread spectrum (b) signals

and the ‘signal’ design is directed towards the most effective combined processing of the
waveforms received by antenna elements. Many ideas from time—frequency resolution
can be applied to space resolution problems.

2.16 Summary

In this chapter we visited briefly the basic procedures of signal reception: detection,
recognition, parameter estimation and resolution. Throughout the chapter the Gaussian
background noise model was accepted, conforming to the classical problem formula-
tion, and the goal pursued was to see whether this somewhat idealized approach appeals
strongly to the spread spectrum technology. The conclusions are summarized in Table
2.1, which lists the signal parameters that affect the performance in every specific
procedure, and indicates the motivation towards involving the spread spectrum when
non-energy-consuming performance improvement is wanted.

As the table shows, it would not be fair to say that the classical reception problems
appeal much to the spread spectrum philosophy. Only the simultaneous time—frequency
estimation and resolution give unequivocal momentum to its involvement. This may
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Table 2.1 Role of spread spectrum signals in the classical reception problems

Problem Performance-influencing Spread spectrum signals
signal parameters

Detection, amplitude SNR (signal energy only) Unnecessary

and phase measurement

Binary data SNR, correlation coefficient Unnecessary

transmission (M = 2)

M-ary data SNR, correlation Unnecessary but

transmission, M > 2 coefficients of all signals sometimes attractive from
an implementation
standpoint

Time delay measurement, SNR, signal bandwidth Unnecessary when

time-resolution power-limit-free,
necessary otherwise

Frequency measurement, SNR, signal duration Unnecessary

frequency resolution

Time—frequency SNR, signal bandwidth and Necessary

measurement, duration

time—frequency resolution

seem very odd and lead to questioning of the grounds for the wide popularity of spread
spectrum nowadays. As the following chapter shows, however, these grounds are quite
solid and manifest themselves clearly whenever we base our study on a more realistic
channel model than the sometimes ‘academic’ Gaussian one, or need to draw in some
additional performance criteria.

Problems

2.1. Three signals s1(¢), s2(7), s3(¢) are given in Figure 2.28.
By how many times is the maximum distance in this signal set greater than the
minimum one?

~Y

~ Y

172

2U

Figure 2.28 Set of three signals



Classical reception problems and signal design 63

2.2. Observation y(f) at the AWGN channel output is given in Figure 2.29, and the
input signals are the same as in Problem 2.1. What will the decision of the optimal
receiver be?

y(®)

172

T t
_Ut--------

Figure 2.29 Waveform at the channel output

2.3. A source generates data at the rate R = 10kbps. Each bit of the source data is
transmitted over the AWGN channel by BPSK. Bandwidth W = 10 MHz is avail-
able in principle. Is it reasonable to use signals with bandwidth W = 10 MHz?

2.4. What is better for BPSK signalling over a Gaussian channel?

(a) Rectangular pulses of peak power 1000 W with bandwidth 100 kHz.
(b) Rectangular pulses of the same duration with peak power 900 W and band-
width 10 MHz?

2.5. Calculate the energy losses for the pairs of signals of Figure 2.30 used for binary
transmission over the AWGN channel with respect to the optimal pair.

ET t :T 7 W 7”——IT
U : U : U’***—'l
B e o 73 s Y o
(a) (b) (©)

Figure 2.30 Three signal pairs

2.6. In differential BPSK (DBPSK) a bit content is transmitted by alternation or non-
alternation of the polarities of two consecutive pulses, identical polarities corres-
ponding to zero and different polarities to one. Compare to the first approximation
DBPSK and BPSK in energy consumption (based on minimum distances only) and
the bandwidth occupied, transmission rates being the same.

2.7. In quadrature PSK (4-PSK or QPSK) two bits (four messages) are transmitted by
four signal phases: 0, 7w, 4 /2. Is this an optimal transmission mode for two bits?
If not, describe a better technique and its asymptotic coding gain against QPSK.

2.8. Is it possible to have 10 equidistant signals with correlation coefficient between any
two of them equal to —1/7? What is the maximal possible number of signals with
this correlation coefficient?
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2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.
2.20.

2.21.

Calculate and sketch versus M the energy loss (in dB) of the set of M orthogonal
signals as compared to the set of M optimal signals (AWGN channel). Find the
asymptotic loss when M grows.

Asymptotic energy gain of orthogonal coding against uncoded binary transmis-
sion for the case of M =2 messages turns to be 1/2 or —3dB, i.e. negative,
showing loss rather than gain. What does this mean physically?

Asymptotic energy gain of orthogonal coding against uncoded binary transmis-
sion for the case of M = 4 messages turns to be 1 (0dB), i.e. no gain at all. Give
the physical reasoning for the result.

In 8-PSK M = 8 messages are transmitted by identical bandpass pulses having
8 different equidistant initial phases. Is this way of transmitting 8§ messages over
the Gaussian channel the best possible one if no bandwidth limitation is imposed?
If not, what is the energy loss of 8-PSK against the optimal set of M signals?
Compare asymptotic (determined by minimum distance) efficiency of M-PSK
against orthogonal coding in energy consumption (given the error probability)
and bandwidth occupied.

In the IS-95 mobile phone uplink blocks of 6 bits are transmitted by orthogonal
signals. The transmission rate is 28.8 kbps. Estimate the bandwidth occupied by
the encoded signals (ignoring further spreading by the long code).

In a digital communication system the allowed bandwidth W = 1.2288 MHz.
What maximal number of orthogonal signals M may be used for data transmis-
sion at the rate of 38.4 kbps?

In a system data is transmitted over the Gaussian channel at the rate of 10 kbps.
The system designer tries to provide 6 dB energy gain against the uncoded trans-
mission. Is this achievable on the basis of orthogonal signals if only bandwidth
within 320 kHz is tolerable?

Some system is allowed to use bandwidth of 10.24 MHz while the necessary
transmission rate is 100 kbps. What potential asymptotic coding gain is achievable
in the system?

It is necessary to transmit data over the Gaussian channel at the rate of 100 kbps
using carrier frequency 2 GHz. Is it realistic to count on energy gain G = 10dB on
the basis of orthogonal signals?

Build up the Hadamard matrix of size 16.

Which of the following transformations preserve/violate the main property
(orthogonality of rows) of a Hadamard matrix?

(a) Permutation of rows.

(b) Permutation of columns.

(¢) Simultaneous alternation of signs of all elements.

(d) Alternation of signs of all elements of several rows.
(e) Alternation of signs of all elements of several columns.
(f) Alternation of sign of upper leftmost element only.

Hadamard matrix Hy, of size M = 2™ is built up by the Sylvester rule starting with
H, = “ _11 ] The first column of H,, is discarded and the rows of the matrix

thus obtained are used to generate signals for M-ary transmission. What sort of
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2.22.

2.23.

2.24.

signal ensemble do we have this way? What is the bandwidth they occupy in
comparison with orthogonal ones?
LFM signal (with linear frequency modulation):

Wa(t — 1)
A cos 27‘1’f0t+u+¢ =7 <T)2

0t — 7] > T/2

has amplitude A4, carrier frequency f,, frequency deviation W, duration 7, time
delay 7 and initial phase . Classify these six parameters as energy or non-energy
ones. (For any bandpass signal /o7 > 1, W < f;.)

Non-energy signal parameter A needs to be measured. The correlation coefficient
p(A\) of the signal copies detuned in A is shown in Figure 2.31 for three different
cases. In which of these will the accuracy of measuring A be highest?

(N p(A)m PN
| " | B\ A
b) (©)

(a) (

Figure 2.31 Dependence of correlation coefficient on a measured parameter

Two non-energy scalar parameters Aj, A, need to be measured simultaneously.
The correlation coefficient of two signal copies with different pairs of values of
AL, A2 1S p(Ar, A2) and geometrically is represented by some surface in three-
dimensional space. A cross-section of this surface by a horizontal plane at some
level (e.g. 0.5) is given in Figure 2.32 for three typical cases. In which of these will
the accuracy of simultaneous estimation of Aj, A, be highest if no a priori know-
ledge about their values is available?

X X X

. i
A y A\ 469—:

1

(a) (b) ()

Figure 2.32 Horizontal sections of the surface p(\;, \;)
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2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

. Amplitude A of the signal s(¢; 4) = As(?) needs to be measured. The reference
signal s(7) for three cases is given in Figure 2.33. In which of these cases will the
accuracy of measuring A be highest?

s(1) s(1) s(1)
U

12 [0 72 ¢ T |0 T T 0 T 1

(a) (b) (©)

Figure 2.33 Three forms of a reference signal

. Amplitude A4 of the signal s(t; A) = As(¢) is measured. Someone is dissatisfied with
the accuracy of the amplitude estimation. How many times should the duration of
the reference signal s(¢) be increased in order to halve the standard deviation of the
estimation of A, all the other parameters of s(¢) remaining the same?

. Amplitude A of the signal s(¢; A) = As(¢) is measured. The amplitude of the
reference signal s(¢) is doubled while its duration is halved. What happens to the
standard deviation of the estimation of A4?

. The initial phase of the bandpass signal needs to be measured. What happens to
the standard deviation of the phase estimation when:

(a) Carrier frequency of the signal is doubled?

(b) Signal duration is doubled?

(c) Signal amplitude is halved?

(d) Signal amplitude is doubled and duration is reduced by four times?

. The initial phase of the bandpass signal needs to be measured. Three variants of the
signal envelope are given in Figure 2.33. In which of these cases will the accuracy of
phase measurement be highest?

. The initial phase ¢ of the LFM signal of Problem 2.22 is measured. Variation of
which of the parameters A, fy, W,, T,7 and in which direction will affect the
precision of the phase estimation? What happens to the standard deviation of
the phase estimation when A4, fy, W, are all increased by V2 times while 7 and 7
are halved?

. Sketch the autocorrelation functions of the three signals shown in Figure 2.34.

. The bandpass BPSK signal consists of three consecutive rectangular pulses each
being of duration A. The phases of the first two equal zero while the third phase
is 7. Sketch the autocorrelation function of the signal.

. The matched filter for a rectangular baseband pulse of duration A is given. What
sort of circuitry should be added to it in order to obtain the matched filter for the
signals of Figure 2.34? Sketch the response of the filter matched to signal (c) when
this very signal inputs the filter.



Classical reception problems and signal design 67

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

s(f) s(f) s(1)
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Figure 2.34 Three forms of a signal

The matched filter for a rectangular bandpass pulse of duration A is given. What
circuitry added to it will produce a matched filter for the signal of Problem 2.32?
Sketch the response of the matched filter to the signal of Problem 2.32.

The autocorrelation functions of three alternative signals are given in Figure 2.35.
Which of these is best for measuring time delay?

(1)
(2)

(1)
(b) [

(1)

(©) (

Figure 2.35 Examples of autocorrelation function

r

Parameters of the plain pulse signal provide standard deviation of time-delay
measurement 0.5us and SNR at the matched filter output ¢ = \/2E/Ny = 10.
Estimate roughly the signal duration.

In some radar a plain pulse signal is used. The system designer wants to reduce the
peak-power by 100 times without sacrificing SNR and at the same time to reduce
by 10 times the standard deviation of measuring time delay. What should the
time—frequency product of the signal in the improved radar be?

In some radar distance is measured through emitting LFM pulse (see Problem
2.22) with time—frequency product WT = 10°. Due to a breakage of the modu-
lator the radar started emitting unmodulated pulses of the same peak-power and
duration. What happens to the standard deviation of distance measuring?

In some system it is necessary to reduce by 10 times the standard deviation of
frequency measurement. The signal power can be increased only 25/16 times
(1.94dB). How should the signal duration be changed?
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2.40.

2.41.

2.42.

2.43.

2.44.

In some system signal duration was quadrupled, signal power remaining
unchanged. What happens to the standard deviation of the frequency estimation?
Horizontal sections of the ambiguity function for four signals are given in Figure
2.36, all sizes marked by the same symbols (7, etc.) being equal. Which of the
signals is best for:

(a) Measuring only time delay?
(b) Measuring only frequency shift?
(c) Measuring both time delay and frequency shift?

(a) (b) (©) (d)

Figure 2.36 Horizontal sections of the ambiguity function

In the course of modernizing some system operating originally with a plain signal,
emitted power was reduced by 6dB. At the same time signal duration was
increased by four times and the plain signal was replaced by a spread spectrum
one with time frequency product WT = 100. What happens to the standard devi-
ations of time delay and frequency estimations as compared to the initial ones?
Which of the signals having the ambiguity diagrams of Figure 2.36 is best for:

(a) Time resolution?
(b) Frequency resolution?
(¢) Time—frequency resolution?

Horizontal sections of the ambiguity function for four signals are given in Figure
2.37, all sizes marked by identical symbols being equal. Which of the signals is best
for:

(a) Time resolution?
(b) Frequency resolution?
(¢) Time—frequency resolution?

Matlab-based problems

2.45.

Write a program illustrating the receiver decision on which of two competitive
signals is received. Do the following:
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Figure 2.37 Horizontal sections of the ambiguity function

(a) Form and plot two 100-dimensional antipodal signal vectors with elements {+1}.

(b) Choose one of them as a transmitted signal.

(¢) Form the 1000 x 100 matrix of Gaussian noise, putting standard deviation o
6—10 times higher than the square root of the signal energy.

(d) Form the 1000 x 100 observation matrix, each row being the sum of signal of
point (b) and noise; plot observations.

(e) For every observation calculate two distances (or another sufficient statistic)
from the observation to each of the two signals.

(f) For every observation take the minimum-distance decision.

(g) Compare the decision with a preset signal of point (b) for each observation.

(h) Calculate the number of errors in all 1000 observations.

(i) Retaining the signal vector lengths and noise deviation, change the signals
into an orthogonal pair and run the program again.

(j) Do the same as in (i) for the pair of signals with positive correlation coefficient
and for the pair with the second signal equal to zero.

(k) Compare the results of items (i)—(k), both with each other and with theoretical
predictions, and give your comments.

2.46. Write a program calculating and plotting binary transmission error probability
versus SNR for an arbitrary pair of signals preset as vectors. Use power SNR
defined for average energy of the signals:

» Ei+E
q = No
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2.47.

2.48.

2.49.

Ei,E, and N, being the energies of the two signals and the one-sided power
spectrum of AWGN. Plot all of the curves in logarithmic scale. Run the program,
and compare and explain results for:

(a) Signal pairs of equal energies: antipodal, with negative correlation, orthog-
onal, with positive correlation.
(b) The pair where one of signals is zero.

Write a program calculating and plotting (in logarithmic scale) curves of the message
recognition error probabilities versus SNR per bit (see Figure 2.9) when m-bit
messages are transmitted over an AWGN channel, including for each value of m:

(a) The accurate error probability for bit-by-bit uncoded transmission of M = 2™
messages.

(b) The accurate error probability for transmission of M = 2™ messages by the
orthogonal signals.

(¢) The union bound on the error probability for transmission of M = 2" mes-
sages by the orthogonal signals.

Run the program for m =1 to 10 and interpret the behaviour of the curves.
Explain why for m = 1,2 the uncoded transmission curves go lower than the
orthogonal signalling ones. For m = 3 to 10, find the values of the orthogonal
coding gain corresponding to the error probabilities 103, 10~ and compare them
with the asymptotic ones.

Write a program demonstrating experimentally energy gain of orthogonal coding
as compared to uncoded transmission of a 6-bit message. The following opera-
tions are relevant:

(a) Form and plot an uncoded 6-bit pattern corresponding to BPSK mode over-
sampled with N, samples per bit (it is advisable to take N, = 64, i.e. 384
samples over 6 bits).

(b) Form the 1000 x 6 Ny matrix of the Gaussian noise samples with standard
deviation equal to a quadrupled bit amplitude.

(¢) Form and plot the 1000 x 6Ny matrix of observations, adding the signal to the
noise matrix.

(d) Demodulate all observations, calculate and output the message-wise error
rate.

(¢) Form the Hadamard matrix of order 64, take one of its rows as an encoded
message and oversample it into the signal vector of dimension 6./N;.

(f) Repeat items (b)—(d).

(g) Compare and treat the error rates for the two explored transmission modes.

(h) Run the program for the range of SNR, changing the noise level; record the
results and compare them with theoretical ones (see Figure 2.9).

Write a program demonstrating experimentally the trade-off between energy gain
and spectral efficiency of the orthogonal signalling. The following operations are
relevant:

(a) Set the number of bits m = 8.
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(b) Form all possible 2" = 256 bit patterns and oversample them so that each bit
occupies 160 samples.

(c) Calculate the power spectra of all bit patterns and the average power spectrum
under uncoded transmission.

(d) Form the Hadamard matrix of order 256 and oversample it to come to the
same dimension of signal vectors as previously.

(e) Calculate the power spectra of all 256 orthogonal signals and the average
power spectrum under orthogonal signalling.

(f) Plot the average power spectra, estimate and compare the bandwidths occu-
pied for both investigated cases and compare their ratio to the theoretical
prediction.

2.50. Write and run a program illustrating optimal measurement of the amplitude of the
triangle pulse of duration T: s(t; 4) = As(z) = %,O <t < T (see Figure 2.38). The
following steps should be fulfilled:

Ll beosoemenae -
1 R boneeee ,/
B 1 B - )
i f H
L 04 femmeeee /
0.2 /”'x : ;
0 »:'f‘ ____________ :L ______________ .
0 0s 1

tT

Z(8)-E()/2

[ow ]}
[y}
— |
M
]

Figure 2.38 Simulation of measuring amplitude

(a) Specify the value of amplitude 4 on your own and form a signal vector of
dimension around 100.

(b) Form 10 vectors of the Gaussian noise n(¢) with standard deviation approxi-
mately equal to the preset signal amplitude.

(¢) Form 10 vectors of the observation y(f) by adding noise vectors to the signal
vector.
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2.51.

(d) Plot waveforms of the observations. Is the signal clearly visible in them?

(e) Calculate and plot the curves of the decision statistics (distances or squared
distances or differences Az — A%>E/2) for all 10 observations versus amplitude
estimation.

(f) Find optimal estimations of 4 for all 10 observations.

(g) Calculate average and variance of the optimal estimations over all observations.

(h) Run the program with several preset values of 4 and compare the results of
measuring with the preset values. Give a theoretical explanation for the
results.

Write and run a program illustrating the optimal measurement of time delay 7 of
the bell-shaped baseband pulse of duration T (by the level 0.01). Assume
7 € [0,97]. The following steps illustrated by Figure 2.39 should be completed:
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Figure 2.39 Simulation of measuring time delay

(a) Use around 1000 sample points over the whole observation interval
7 €[0,107]. Preset the value of 7 (in number of sampling points) on your
own and form the time-shifted signal vector;

(b) Form 100 vectors of Gaussian noise n(z) with standard deviation within the
range 1 to 2 times the signal amplitude.

(¢) Form 100 observation vectors y(¢) by adding noise vectors to the signal vector.

(d) Plot waveforms of the observations (see Figure 2.39). Is the signal clearly
visible in them?
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2.52.

2.53.

2.54.

(e) Calculate and plot curves of the correlations between observations and time-
shifted signal copies versus time shift. Is the signal effect now more visible?

(f) Find optimal estimations of 7 for all 100 observations.

(g) Calculate the average and the variance of optimal estimations over all obser-
vations.

(h) Run the program with several preset values of 7 and in the range of SNR.
Compare the results of measurements with the preset values. Give a theor-
etical explanation for the results.

The bandpass rectangular pulse of duration 7 is applied to a bandpass filter with
rectangular pulse response of duration 27, which is frequency-detuned against the
signal by F. Based on the complex envelope, calculate and plot signal shapes (real
envelopes) at the filter output for F = a/T, where a = 0,0.5, 1.0.

The bandpass rectangular pulse of duration 7 and carrier frequency fy = 10/T is
applied to the bandpass filter with rectangular pulse response of the same duration
which is frequency-detuned against the signal by F € {0, iT, %} Based on the
complex envelope, calculate and plot the bandpass signals at the filter output
for all three values of F.

Write a program calculating and plotting the autocorrelation function of both
baseband and bandpass signals of the same arbitrary form and duration 7. Take
the carrier frequency of the baseband signal equal to 10/7". See the example in
Figure 2.40. Run the program for:

(a) Rectangular pulse.
(b) Triangular symmetric pulse.
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Figure 2.40 Autocorrelation functions of baseband and bandpass signals
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2.55.

2.56.

2.57.

(c) Triangular pulse rising within [0, 7).
(d) Pulse of your own choice.

Write a program demonstrating the time-compression effect in a matched filter.
Take a rectangular linearly-frequency-modulated (LFM) signal of duration T
with complex envelope:

$e) = eXp<j -

0, t<Qort>T

VVdZ2

)oosist

Take the initial carrier frequency fy = 50/7T and five values of frequency deviation
W;=a/T, a€{0,10,20,30,40}. For each value of deviation show bandpass
signals at the matched filter input and output.

Write a program illustrating the dependence of the accuracy of time-delay estima-
tion on the signal bandwidth (see Figure 2.21). Take an LFM signal with the bell-
shaped envelope, i.e. the complex envelope:

o 1\? TW 12
. exp|—20( =—= exp| J ,0<t<T
S0 = p{ (T 2)] p(] T )

0, t<0Qort>T

Perform calculation and plotting for the values of the deviation W; =a/T,
a=0,10,25,50. The following steps should be completed:

(a) Specify the value of the deviation W, and form the signal (complex envelope)
vector of dimension around 100.

(b) Plot the real envelope of the signal.

(¢) Form 100 vectors of the complex Gaussian noise with standard deviations of
real and imaginary parts within [0.5, 4.0].

(d) Form 100 observation vectors by adding noise vectors to the signal vector.

(e) Plot waveforms of the real envelopes of the observations. Is the signal clearly
visible in them?

(f) Calculate and plot curves of the matched filter output real envelopes for all
100 observations.

(g) Find the time positions of the maximums of matched filter output real
envelope for all 100 observations.

(h) Calculate the average and the variance of the time-delay estimations over all
100 observations.

(i) Compare data for different W, and treat the results theoretically.

Write a program demonstrating resolution of two time-shifted bandpass rectangu-
lar pulses of duration 7. Take the signal of Problem 2.55 with the same values of
carrier frequency and deviation (Figure 2.27). Recommended steps:

(a) Specify the value of the deviation W, and form the signal (complex envelope)
vector of necessary dimension.
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2.58.

(b) Form and plot a bandpass signal.

(c) Specify the value of delay 0 < 7 < T, form and plot a delayed signal copy.

(d) Calculate and plot superposition of the two signals.

(e) Calculate and plot matched filter response to it.

(f) Run the program, varying the frequency deviation and delay, and give a
theoretical treatment of the results.

Write a program calculating and plotting the time—frequency ambiguity function
of a plain bandpass pulse with arbitrary real envelope and duration 7. Provide for
plotting also the basic sections of the ambiguity function (along the 7 and F axes)
as well as the horizontal section at the level 0.5. Run the program for:

Roftau F}

Figure 2.41 Ambiguity function of a rectangular pulse

(a) Rectangular pulse (see Figure 2.41).
(b) Triangular symmetric pulse.

(c) Triangular pulse rising within [0,7).
(d) Pulse of your own choice.
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Merits of spread spectrum

3.1 Jamming immunity

The surrounding environment in which a specific system transmits and retrieves infor-
mation is not perfectly friendly towards it. Along with thermal noise, interferences of
varying physical nature may accompany the useful signal at the receiver input. In
particular, interference can emerge as a result of the presence of some other system on
the air if its operating frequency is close enough to that of the first system. Following the
universally adopted terminology, we will call this sort of interference a jammer.

A great variety of jammer types may be encountered in practice and special measures
are as a rule necessary to counter their destructive effect. In this section we will show
that the spread spectrum is quite a powerful instrument of jammer neutralization. An
exhaustive investigation into system behaviour subject to the combined effects of both
jammer and thermal noise would require the calculation of integral performance char-
acteristics such as error probability or estimate precision. The concrete results of this
challenging work may be found in books (e.g. [5,6]) and mainly in numerous specialized
papers (see, for example, the bibliography in [3]). However, our aim is much more
modest and directed at getting a general idea of why and how spread spectrum helps in
combating a jammer. For this reason we limit ourselves to only the simplest assessments
based on the power ratio between the signal and overall interference. Putting it another
way, we choose for the analysis here only the plainest, but still very characteristic, type
of jammer, which is approximated by the Gaussian random process whose spectrum
overlaps with that of the signal. Sometimes such a simplified approach is fully adequate,
as it is in the case of BPSK or ASK data transmission, where the error probability
depends only on the ratio referred to above, whenever the overall interference may be
assumed Gaussian. Other situations (M-ary transmission, parameter measuring) are not
that straightforward and the power ratio does not contain all the necessary information
on the performance quality, but still remains indicative as a ‘rule of thumb’ to judge the
potential advantages of spread spectrum. We consider two basic models of a jammer,
starting with a narrowband one.

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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3.1.1 Narrowband jammer

This type of jammer is more typical of situations where some side system or systems
have no hostile intentions with respect to the useful system and create a jammer just as a
result of normal functioning. Figure 3.1 shows the amplitude spectrum |3(f)| of the
useful signal and the jammer power spectrum J( ') approximated by rectangles against
the uniform background AWGN power spectrum Ny/2. We call a jammer narrowband
only to stress that its bandwidth W is smaller than the signal bandwidth W and there
are areas where the signal spectrum is not corrupted by the jammer. The narrowband
jammer may be further classified to partial-band, tone, etc. [3,5,6]; however, for our
study the specific value of its bandwidth is immaterial.

First suppose that the useful system undertakes no special measures to combat a
jammer except for, maybe, just appropriate signal design. This kind of scenario means
that a system designer may foresee the risk of the presence of a jammer and allow for it
in the signal choice, but the system is not adaptive, and makes no adjustment of either
signal modulation or processing algorithm to the current interference environment. In
other words, it uses always only the filter, which is matched to AWGN regardless of the
presence or absence of a jammer at the receiver input.

To find the power signal-to-interference ratio (SIR) ¢7 at the matched filter output
note that with a rectangular signal spectrum (where |3(f") | equals the constant § within
signal bandwidth W and is zero elsewhere), the filter amplitude transfer function is also
uniform within the signal bandwidth W and zero outside it. Without loss of generality
we can put its non-zero level equal to 1. Therefore the filter passes a jammer (treated as a
random process) to the output without any change of its power J, the filtered AWGN
power being NyoW. On the other hand, the filter is matched to the signal and sums all
signal harmonics coherently to produce the output peak A, = [~ [S(f)|df =2Ws5,
where spectrum uniformity within the bandwidth W is used and doubling is responsible
for ‘negative frequencies’. By the same token signal energy calculated through the
Parseval theorem E = ffooo |5(f) |2 dr = 2W§*. Consequently:

) A2, 4Ws? 2F
=T NW T+ NW ~ No+ /W

(3.1)

No/2

Figure 3.1 Spectra of signal, jammer and background AWGN
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From the last equality it can be seen that, regardless of a specific jammer bandwidth ¥,
the matched filter output SIR behaves as if the jammer power were uniformly spread
over the signal (not jammer!) bandwidth W, creating an additional ‘AWGN’ with the
power spectrum J/W.

Let us turn to the other scenario where the useful system adapts its receiver to the
current interference pattern. The optimal processing procedure would be filtering
matched to the overall interference, including a narrowband jammer. It is obvious
physically that when a jammer is very strong against the background AWGN such
processing is equivalent to a full cutting off of the frequency band damaged by the
jammer. Figure 3.2 shows spectra at the band-elimination filter output. No jammer
is present there but the signal frequency components within the jammer bandwidth are
also forced to zero as well as the noise components. The spectral pattern may be treated
as though the signal originally occupied only the part of bandwidth W free of
the jammer, having the energy E(1 — W;/W). Accordingly, the matched filter clearing
this residual signal off the AWGN will provide output power SNR (the subscript J
stands for jammer):

i = 22 - - wyw) 6:2)

with ¢> = 2E/N, being a ‘pure’ matched filter power SNR in the absence of jammer.'
Analysing equations (3.1) and (3.2) we note that they both clearly point to the
benefits of wideband signals for the anti-jamming capability: the wider the signal
bandwidth W versus the jammer bandwidth W}, the smaller is the additional power
spectrum in the first case and the energy loss in the second (jammer power J constant),
and the greater are ¢7 and ¢5. But when the signal peak power P is limited and not
allowed to increase, widening the bandwidth cannot be realized by a trivial signal

5|

Nyl2

Figure 3.2 Spectral pattern after the band-elimination filtering

"'We again stress that the SNR is not a universal characteristic of performance. It is appropriate for BPSK or
ASK data transmission but in the general case band elimination affects the correlation properties of signals
along with their energies. E.g. orthogonal signals may lose orthogonality under cutting off partial bandwidth.
More detailed analysis is necessary to allow for this sort of effect.
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shortening, since otherwise signal energy, SIR and SNR will suffer. Thus, we arrive at
the following conclusion: to achieve a higher narrowband jamming immunity with no
mobilization of brute-force resource (increase of signal energy or peak power) the only
way is to widen the spectrum independently of signal duration, i.e. to use spread
spectrum technology.

3.1.2 Barrage jammer

In many military scenarios and intelligence games, a jammer is frequently created
deliberately as an electronic countermeasure. In such cases the jammer transmitter
may suspect that the system under counteraction will appear smart enough to register
the presence of the jammer and properly adapt itself to it. In particular, when the
jammer is narrowband the system can resort to band-elimination filtering or even to
changing a signal to shift its spectrum to the jammer-free zones. To prevent this, the
barrage noise jammer can be engaged whose power spectrum covers the signal spectrum
with no gaps (Figure 3.3). It is clear that the barrage jammer corrupts the signal in the
same way as an additional AWGN with power spectrum density N, = J/W. Therefore,
the power SNR at the matched filter output of the useful system:

2E 2E
No+N; No+J/W

0 =

coincides with SIR (3.1). In this case, however, the malignant intent urges the jammer
transmitter to provide a much more damaging effect compared to the natural AWGN.
It is possible only if J/W > Ny, resulting in:

2EW  2P(WT)
J J

q; =~ (3.3)

We again clearly see that when the peak power of the useful system is limited, and so is
the power resource of the jammer transmitter, the involvement of signals with high
time—frequency product WT, i.e. spread spectrum ones, is the only instrument at the
disposal of the system to improve its immunity towards the barrage jammer.

Formula (3.3) explains another popular name for the time—frequency product WT. As
is seen, the ratio between the signal power and the power of a uniform-spectrum noise

T [s(r)|

Ny2

Figure 3.3 Spectra of signal, barrage jammer and background AWGN
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within the signal bandwidth increases at the matched filter output 2T times against the
input value P/J. Thus, it is natural to call WT the processing gain.

The conclusions above are well supported visually by two figures, obtained by
simulation in Matlab. Figure 3.4 illustrates matched filtering of the plain rectangular
signal (column a) and a spread spectrum signal (LFM, WT = 50) of the same duration
and energy (column b). The same jamming CW interference is added to both signals
(second row). While the plain signal is fully masked by the jammer and is not clearly
seen at the filter output, the spread spectrum one, time-compressed by the matched
filter, is observable distinctively.

In Figure 3.5, where the columns correspond to the same two signals, the upper plots
show the signal power spectra. The plots of the second row give the power spectra of two
random realizations of different barrage jammers, the same fixed average jammer power
being distributed over the signal bandwidth. Because of this the average level of the spectrum
in column (b) is about 50 times lower than that in column (a). The third row shows example
observed waveforms, where the intensity of the jammer is approximately the same for both
signals, which are well hidden under the jammer. As for the lower plots, they again confirm
explicitly the superiority of a spread spectrum signal in resistance to a barrage jammer.

In closing, note once again that this section is in no way aimed to answer questions on
what sort of jammer is most dangerous in a concrete scenario and what the system should
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Figure 3.4 Examples of matched filtered jammer and signal
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Figure 3.5 Clearing a signal off a barrage jammer

do to optimize its performance in more complicated situations than those considered. The
idea was just to demonstrate the principal advantages of spread spectrum in countering a
jammer. An interested reader may consult numerous specific works on the issue and
confirm that whatever sophisticated systems and strategies are investigated, the general
tendency is always the same: spread spectrum raises the jamming immunity potential.

3.2 Low probability of detection

It had been already pointed out that the potential of spread spectrum was first recognized
by designers of military and intelligence systems and, as shown in Section 3.1, one reason
for this is the high anti-jamming resistance of spread spectrum signals. The other reason we
will discuss in this section.

In the confrontation of electronic systems effective jamming may be organized only
after detecting the presence of an adversary system on the air and estimation of its
parameters, such as carrier frequency and bandwidth. This entails a very popular
scenario of the confrontation of two systems, when the first (call it intended) tries to
operate as covertly as possible and escape unintended detection of its signal, while the
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second (interceptor or eavesdropper) is on the alert constantly, doing all in its power to
discover an active state of the first. From the perspective of the intended system, let us
explore how the spread spectrum can help in its conflict with an interceptor.

There are lots of strategies and techniques, which may be hypothesized to be at the
interceptor’s disposal potentially. They may be rather sophisticated and hard to analyse
(see [6,9] and their bibliographies). We are again pursuing the goal of getting the general
idea of why a spread spectrum appears to be a good option in this case. Let us assume that
the intended system uses a signal with some non-trivial modulation law, details of which
are not known to the interceptor, depriving the latter of the chance to use a matched filter
or a correlator for signal detection. It is natural to believe, then, that the eavesdropper has
no other choice but to treat the intercepted signal as random and base its detection on just
the presence or absence of some extra energy in the suspicious frequency band. Thus, an
energy detector, also called a radiometer, which is optimal for detecting a band-limited
noise signal against the AWGN background, is accepted as the operational instrument at
the intercepting side. Figure 3.6 gives the structure of an energy detector. A bandpass filter,
whose bandwidth W; spans the whole signal spectrum or only part of it, filters the
observation to remove any off-band noise. Then a square-law amplitude detector forms
an estimate of instant power, which is further integrated to produce an estimate of energy
E within an observation interval T,,. The energy estimate is then compared with the
threshold E;, and inequality E > E, entails the decision that the observation contains a
signal along with the ‘natural’ background noise, while in the opposite case no signal
presence is declared. In practice, an interceptor may not know beforehand the frequency
zone and time interval occupied by a signal. In such circumstances he tries various
combinations of these parameters, implementing the whole procedure with the aid of
either scanning the time—frequency area or a bank of parallel channels, each analysing its
specific time—frequency zone. In any case the performance of the interceptor receiver will
depend radically on the performance of the energy detector tuned to the true signal time—
frequency zone. This allows us to idealize an interceptor’s prior knowledge and believe that
he is well aware of where on the time—frequency plane the signal energy may manifest
itself. As long as observation outside the signal duration carries no information about the
signal presence we may put 7,, = T, as is done in Figure 3.6.

Figure 3.7 shows a rectangular approximation of the signal spectrum along with the
uniform natural background AWGN power spectrum (a) and the amplitude—frequency
transfer function of the radiometer bandpass filter (b). From the interceptor’s view-
point, an indication of the signal presence is an extra (signal) power spectrum density
Ng/2 = P/2W added to that of the background thermal noise Ny/2. The radiometer
bandpass filter has on its output the noise process with power o2 = Ny W; in the absence
of the signal and 02 + 02 = (N, + No)W; = (P/W + No)W; in its presence.
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filter detector 0 b
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Figure 3.6 Energy detector (radiometer)
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Figure 3.7 Spectra at the radiometer input and the bandpass filter bandwidth

Let us find the mean and variance at the envelope detector output. First of all, an
output voltage u, of the square-law detector equals the input instant power. Therefore,
expectation %, of u, in the absence of a signal is simply the average power of the filtered
noise 9 = o>, while when the signal is present it goes up to %y = o2 + o2. It is exactly
the increment of %, caused by the signal:

Aug =g —tigo = 0> = NW; = PW; /W (3.4)

which allows the interceptor to hope to detect the presence of a signal. On the other hand,
this useful (from the interceptor’s viewpoint) effect is masked by the random fluctuations
of u,, measured by its variance var{u,}. The latter can be found if it is remembered that
the instant power of a bandpass process is its instant envelope Y squared and halved, and
thus u; = Y?/2, meaning that var{u,} = var{Y?}/4. Variance of any random variable
may be calculated as the mean square minus the mean squared [1,13,14]:

var{¥?} = 74— (2’ (3.5)

Now make use of the fact that the envelope Y of a Gaussian bandpass random process
with variance o> has Rayleigh PDF [1]:

Y Y?

= ——),Yy>o0
W(Y) = aze"p< 202)’ =

0,Y <0

and its even-order moments are found via elementary integration [13]:
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Substituting this into (3.5) gives var{Y?} = 80* — 40* = 40*. When the signal is not
present at the interceptor receiver input we should use in this expression o® = o2. Strictly
speaking, with the signal advent the filtered observation may differ from a Gaussian process,
making applicability of the result just obtained doubtful. This detail, however, has no
importance to the case in question, since the intended system does its best to hide its signal
under the thermal noise and we have every reason to assume that a signal has a negligible
effect on the variance of instant power and thus on the variance of the detector response.
Therefore, independently of signal presence, variance of u; can be assumed the same:

var{ug} = var{Y?}/4 = o* = (NoW,)? (3.6)

In order to estimate the mean u,; and register its growth due to a signal presence, the
integrator in the scheme of Figure 3.6 runs time averaging of the detector response over
the observation period 7. To make a constant component at the detector output
distinctive enough against the random fluctuations the latter should be smoothed as a
result of integration. This is possible only if fluctuations of the detector response around
uy are sufficiently fast and change their polarity many times during the period T to
compensate each other and produce an averaging effect. In other words, the number of
statistically independent samples 7, of the detector response within 7" should be large
enough. Extension in time (correlation spread 7.) of the autocorrelation function of a
random process is a trustworthy first approximation of a minimal time interval between
samples, starting with which samples may be treated as independent. Since the filtered
observation has the bandpass W} its correlation spread is estimated as 7. &~ 1/W;, which
gives the number of independent samples n; ~ W;T.

Although practically integration may be implemented as continuous, its result is
rather close to that of just summation of n; independent samples [6,9], which is even a
more practicable technique, especially in digital circuitry. To perform an accurate
analysis, the PDF of the integrator output value E should be found for both hypoth-
eses (signal absence and presence) and then integrated over the decision regions to
obtain two probabilities, of false alarm and detection. These PDFs are subject to the
chi-square law, which is a bit bulky and not quite transparent enough for a physical
treatment. However, we may again exploit the fact that a signal is weak and its reliable
detection requires a large number of integrated samples n;. Then the central limit
theorem allows assuming Gaussian PDF for the integrator output E, therefore finding
the mean and variance of E is enough to accomplish calculation of the probabilities
just mentioned.
~ When only AWGN is observed the mean and variance of E are
E = ngiig, var{E} = nyvar{us} = n,o?, where the second result follows from (3.6) and
statistical independence of the integrated samples. Similarly, when AWGN plus signal is
observed, E = n,ii;; but the variance remains unchanged because of signal weakness.
Thus PDF at the integrator output corresponding to the hypotheses H (signal absence)
and H, (signal presence) are:

W (E|H;) = Sex

n

_ (E - nsadi)z =01
2n50';l‘ y =Y
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When E exceeds the threshold E, the false alarm happens if a signal is actually absent
and detection if a signal does arrive at the receiver. Hence, the probabilities py, ps of
these events are respectively:

. oo A E; — nyiiqo
pr = P(E > E/|H) = / W(E|Ho)dE = Q(W)
E,
and
—P(E>E|H)—7W(E|H \dE — o Bt
Pa = 2 L)) = 1 = \/n_xaﬁ
E;

Having rewritten the second of these equations as:

pa = Q( (3.7)

E, — ngitqo  ny(idg) — udO))

Vo NC

one may see that if a tolerable level of the false alarm probability is predetermined, the
first fraction in the brackets of (3.7) is fixed and the detection probability is completely
defined by the ratio:

ons(a —wa0)  nAug (3.8)
a Ny ngvar{u,} )
The physical content of the latter is obvious: it is a voltage SNR at the integrator output
showing the proportion between the useful (increment of expectation due to the signal
advent) and hampering (standard deviation of random fluctuations) components of E.
Making use of (3.4) and (3.6) together with the equation n; = W;T, we can represent
(3.8) as:

wr- L

qi = \/ng WN,

P
ny—— =
" WN,
This equation allows us to see that from the interceptor’s point of view, the maximal
possible filter bandwidth, i.e. equal to the signal one (W; = W), is optimal, providing
the greatest output SNR:

PT §
7= VWN, 2WT

where ¢> = 2E/Ny = 2PT/N is, as always, SNR at the matched filter output of the
intended receiver.

Certainly, ¢> should be maintained large enough otherwise the intended system will not
be able to do its main job. It is quite clear, then, that the intended system has the only way
to prevent detection of its signal by a potential interceptor: use a spread spectrum signal
with as large a processing gain WT as possible. Coming back to Figure 3.7 uncovers the
physical basis for this conclusion. Widening the spectrum of the signal of a constant energy

(3.9)
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and duration reduces the signal power spectrum density, hiding it under the background
spectrum of the natural thermal noise.

Example 3.2.1. Consider the system transmitting sporadically and rather infrequently one of 64
messages using orthogonal signals. To provide error probability no worse than 1072 it needs to
use SNR around 7 dB per one bit, or 15 dB per 6-bit message (see Figure 2.9). Thus ¢° is 15dB
and transforming the interceptor’s (voltage!) SNR (3.9) into decibels we have:

(G)gs = 2(G%)gg — 20192 — 101g WT

If the system employs spread spectrum signals with processing gain WT = 1000 the
interceptor's SNR turns to be (gi)qg = —6dB or g; = 1/2, which is not at all sufficient for
reliable detection of the intended system’s presence on the air in one session. If, for instance,
the interceptor tolerates a probability of false alarm of p; = 1073 then according to (3.7) the
detection probability py < 5 x 1073, i.e. is extremely small and exposes no serious threat to the
intended system.

Finishing this section, note that the discussed advantage of spread spectrum is widely
utilized today not only by the military or special services. The fact that a spread spectrum
signal may be practically unnoticeable for the equipment that monitors the state of the radio
air has serious implications for licensing policy. In particular, the range of commercial
systems that may actively operate on the air without applying for a licence becomes broader,
and in some regions special spectral zones are currently allocated for such licence-free use.

3.3 Signal structure secrecy

Continuing the line of the previous section, let us remember once more that the only
reason for an interceptor to resort to such an ineffective detection instrument as an
energy receiver is lack of information about the structure of the detected signal, i.e. its
modulation law. As a result, the interceptor cannot process the signal in the manner
used by the intended receiver (matched filtering). Of course, if the signal structure is not
complicated enough and the interceptor is aware that it was chosen from only a few
alternatives he may try them all. Appropriate equipment for doing so may be a bank of
parallel matched filters or a single filter (several filters) reconfigured to fit the candidate
signal structures serially in time, if the signal is known to be received for an adequate
duration. Therefore, another aspect of the strategy of the intended system in its conflict
with an interceptor consists in making a signal structure practically unbreakable.

A similar task is characteristic of military or commercial systems that do not tend
to make the fact of their operation a mystery, e.g. if they function continuously, but
are very keen to avoid unauthorized access to services addressed only to classified
consumers, or forging of the transmitted information. The satellite-based global naviga-
tion system GPS is a convincing example of this kind. It has two positioning channels
(see Section 11.2): open (or clear access, abbreviated C/A) and special (or protected, P).
The signal transmitted over the second channel allows super-high precision of positioning,
and the US government, which runs the system, does not permit unconditional access
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to this channel. In order to protect it from unauthorized use some special measures are
undertaken concerning the signal modulation.

In disciplines dealing with information security, the extent of data protection is
measured by a number of competitive equiprobable keys, which an enemy cryptanalyst
(eavesdropper) should try to crack the ciphertext, i.e. encrypted data. In application to
the signal structure, each of those keys is just a modulation law, which is typically
repeated with some period 7. Suppose that a signal is built of chips (see the example in
Section 2.7.3) on the basis of an M-ary alphabet, i.e. using M different symbols to
manipulate chips. If the bandwidth allocated to the system is W then the total signal
space has dimension measured as WT (ignoring bandpass doubling; see Sections
2.3-2.5), i.e. a modulation law may be thought of as being constructed of WT chips. It
is clear, then, that M "7 is the total number of possible modulation laws, i.e. competitive
keys, and the system designer concerned with secrecy of the modulation format in the
developed system should employ signals with rather large processing gain WT.

Example 3.3.1. The signal of the P-channel (P-code) in GPS is binary (M =2) with the
bandwidth W ~ 10 MHz. Its structure is quite regular and repeated with the period T =7
days. Being hidden under the thermal noise, this signal cannot be retrieved by symbol-wise
reception and only knowledge of its fine structure permits it to be cleared with highest efficiency
off the AWGN. To prevent an unauthorized interceptor from accessing the P-code, a secret
binary key (W-code) is modulo 2 added to it, masking the structure of the resulting Y-code.
A single symbol of the W-code spans 20 symbols of the P-code; therefore, to break this mask
by a trial and error method, up to 2W7/20 galternatives should be tested. Since
WT =7 x 86400 x 107 > 102, the number of tried keys is greater than 2 to the power of ten
billion, which is fully beyond any imagination. For this reason the Y-code is believed to be
unbreakable and no reports have emerged in nearly 10 years of its history on any successful
cryptanalytical attack on it.

We conclude the section with another declaration on the advantages of spread
spectrum: this technology is very conducive to cryptographic protection of a signal
structure.

3.4 Electromagnetic compatibility

The problem of electromagnetic compatibility (EMC) is one of the most topical in
modern wireless engineering. EMC implies friendly co-existence of different systems
on the air despite each of them receiving not only its proper signal but also the signals of
the other systems. Certainly, it is impossible to root out entirely mutual disturbance
when several systems are operating simultaneously within a relatively small area. Any
active system, i.e. emitting electromagnetic waves, inevitably affects all neighbouring
ones and a system designer should try to minimize this potentially harmful influence.
There are two parties playing the EMC game. The first, which may be called
‘emanating’, tries to minimize the interference created by its emitted power to other
nearby, so-called ‘susceptible’, systems [15]. The motivation for this is not only ethical
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but is also enforced by strict international and domestic regulations, compliance with
which is carefully monitored by the services authorized to impose relevant sanctions.
Any system of the second, ‘susceptible’, party takes its own measures aimed at neutral-
ization of alien signals falling in its receiver front end.

Among the traditional ways of providing EMC are stringent frequency allocation
controlled by national and world institutions, employing antennas with high
directivity, careful design of RF circuitry etc. Here we briefly show why spread spectrum
technology may also be included in this list.

From the point of view of the emanating system, the following logic is justified. As
long as it is possible to make the emitted signal almost imperceptible for a special
monitoring receiver (see Section 3.2) at the cost of complicating the modulation law,
i.e. spreading the spectrum, such a signal will all the more be less harmful to an ordinary
outside system operating in the same band. The issue is only in the choice of processing
gain guaranteeing that the signal power spectral density appears to be sufficiently low
compared to the natural noise spectrum intensity at the input of an outside receiver. As
a rule of thumb, assume that ‘sufficiently low’ means —7dB, i.e. N;/Ny < 0.2. Substitut-
ing Ny=P/W =E/WT into this proportion leads to the criterion of EMC
E/WTNy < 0.2 or ¢>)/WT < 0.4, where again the targeted parameter is expressed in
terms of the intended receiver SNR ¢ and processing gain WT. If, for instance,
intended SNR at the point of an outside receiver were 20dB, then WT > 400 might
be considered satisfactory in respect of the EMC problem. In a real design estimates like
this have to be coordinated with distance so that some circle around the emanating
system exists outside of which the signal of the latter is practically harmless for other
systems [16].

From the position of a susceptible system, any outside signal at its receiver output
may be treated as a narrowband or broadband jammer and all the reasoning behind the
benefit of spread spectrum in anti-jamming (see Section 3.1) is applicable. Therefore we
see that the spread spectrum philosophy fits well with the issue of EMC.

3.5 Propagation effects in wireless systems

To explore the next merit of spread spectrum we need to collect some supplementary
knowledge on wave propagation effects in wireless channels, and this section will be a
sort of excursion into this area. First of all, a key parameter affecting performance in
any reception problem is signal intensity or SNR. Certainly, signal energy and power in
all preceding formulas expressing error probability, variance of estimate etc. character-
ize signal level at the receiver input. Hence, it is important to be able to predict signal
intensity at some point in space remote from the transmitting antenna, allowing for
effects accompanying electromagnetic wave propagation.

The issue of wave propagation is quite complicated and hard to analyse
theoretically. There are a great variety of factors causing both deterministic and random
attenuation of a signal reaching the receiver input. Due to them the received signal is
corrupted not only by additive noise (AWGN) but also by multiplicative interference,
whose name stems from the fact that it changes signal intensity, or putting it another way,
scales signal amplitude.
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3.5.1 Free-space propagation

To begin with consider an idealized free-space model (see Figure 3.8), where there are no
obstacles between the transmitter and receiver antennas and the transmitted wave
propagates along the single possible path, called line-of-sight (LOS).

Let D denote the distance between the transmitter and the receiver. If the transmitter
antenna were omnidirectional the transmitted power P; would be uniformly distributed
over the inner surface of the sphere of radius D and power P,/47D? would fall on every
unit of area of this surface. The receiving antenna with an effective area 4, would then
capture a received power P, = P,A,/4wD?. If the transmitting antenna is directional it
emanates in the receiver direction power which is G, higher than that of the omnidirec-
tional one, and G, is called a transmit antenna power gain. In this case the received
power becomes G, times higher as well. To represent the received power in a symmetrical
form, we make use of the relation between A4, and a receiving antenna power gain
G, = 41 A,/\>, where ), is wavelength. We will come to the Friis free-space formula [4]:

Wwo

A )’
P, = PGG (5 (3.10)

showing that the attenuation of the signal power along the LOS is inversely propor-
tional to the squared distance.

The free-space model may be directly applied to communication links whose environ-
ment is well described as an open space, e.g. between space vehicles or aircrafts, ground
control centre and space vehicle etc. The propagation medium of terrestrial systems is
much less favourable and in its influence on the signal intensity two main components
are typically categorized: shadowing and multipath fading.

3.5.2 Shadowing

Shadowing is caused by landscape details obstructing LOS: hills, forests, bushes, buildings
and so forth. Due to them the signal intensity drops with distance much faster than equation
(3.10) predicts. Of course, the irregular nature of terrestrial patterns makes attempts at
creating some universal theoretical model of shadowing impossible or worthless. A great
deal of field testing has been carried out to collect knowledge about the general character of
the dependence between the received power and the length of the propagation path and a
number of empirical models have been proposed [17-19]. One of the most popular with
mobile communication specialists is the Okumura—Hata model, according to which the
behaviour of an average received power P, obeys the law P, = kP,/D° where the specific
value of the exponent e depends on the kind of landscape, typically ranging from 3 (rural
area) to 5 (dense urban area) and the coefficient & is determined by the frequency band and

@ - )
LOS
Transmitter Receiver
antenna antenna

Figure 3.8 Free-space propagation model
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the heights of the antennas [2,6,15,19]. The received power predicted by this model gives
only a very rough reference point, being the result of averaging over the different positions
of the receiver with the same distance D from the transmitter. Fluctuations of P, along the
arc of radius D centred at the transmitter location are significant and approximated by the
lognormal PDF, meaning that the distribution of the decibel content of the received power
x = 101g P, is Gaussian (normal):

=2
W(x) = ﬁexp [— %}

The standard deviation o, of 101g P, in the last expression is commonly accepted in the
literature to be between 6 and 12 dB.

Attenuation of power caused by shadowing has a static character and, even when the
receiver is in motion, usually changes in time comparatively slowly due to the large scale
of landscape components (tens or hundreds of metres). For this reason shadowing is
also often referred to as large-scale or long-term fading.

3.5.3 Multipath fading

Let us turn now to the second factor affecting the received signal intensity: multipath
propagation. As a matter of fact, the transmitted signal can reach the receiving antenna
travelling by many paths. The LOS may appear as one of them or be utterly obstructed,
all the other paths emerging as a result of the transmitted wave being reflected by
various objects. Examples of such reflectors are buildings, towers, cars, aircrafts, the
earth’s surface and many more (see Figure 3.9).

.
| @

Receiver

Transmitter

Figure 3.9 Illustration of multipath propagation
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Suppose that travelling by the ith path, the transmitted signal with the reference
complex envelope S(7) assumes amplitude A;, delay 7; and initial phase ¢;. Then the
received complex envelope will be found as:

S.(1) = ZA,S(: — 1) exp(joy) (3.11)

where without loss of generality the real amplitude of the reference signal is set equal to
one. When the delay spread 7,4, i.e. maximal mutual delay between signals of different
paths, is within the signal duration all of the multipath signals will overlap and interfere
with each other. To better understand the phenomenon, consider first one simple scenario,
which may take place in mobile communications, TV broadcasting or elsewhere.

Example 3.5.1. Figure 3.10 describes the situation where the transmitted signal reaches the
receiver through the paths created by two reflectors (buildings, vehicles etc.), the LOS path
being totally blocked by an obstacle (e.g. a building) and (3.11) including only two summands.
Both reflectors are oriented so that they emit the secondary wave towards each other.
The receiver placed on the line connecting the reflectors will observe superposition of the
two interfering waves whose phase difference ¢ is governed by the ratio of propagation
difference § = Dj + D — D, — DJ to the wavelength \,:¢ = 276/\,. With amplitudes of
the reflected signals at the receiver location Ay, A, the resulting amplitude A, may be found

by the cosine theorem as A, = \/Aﬁ + A2 + 2A; Az cos ¢ (see phasor diagram in Figure 3.11a).

The periodicity of A, as a function of ¢ means its periodicity in dependence on the propagation
difference 6. When the receiver moves along the line connecting the reflectors its displacement
by Aw/2 in any direction changes ¢ by one wavelength )\, so that ¢ changes by 27 and values of
A, at the points separated by )\, /2 are identical. In other words, interference of two impinging
waves creates a stationary wave with period A,/2. Moving along the tested line the receiver
will alternate observing maximal A; + A, and minimal |A; — A| amplitudes each A, /2m. If the
amplitudes of the reflected signals are close (rather probable case) the resulting
power P, = A%/2 = (A3 + A2)/2 + AjAzcos ¢ drops almost (or precisely) to zero when the
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Figure 3.10 The two-path case
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(a) (b)

Figure 3.11 Interpretation of multipath effects with phasor diagrams

receiver passes the stationary wave nodes. This is exactly the phenomenon called multipath
fading. Since the space distance between adjacent peaks of P, is comparable with a
wavelength, for the system operating in metre or decimetre band the time cycles of changing
P, at the moving receiver input will be rather short (typically split seconds).

The plot of P, in dependence on time in Figure 3.12 gives an example for parameter values
typical of mobile communications: A, ~ 0.3 m and the receiver carrier speed V, = 60 km/h. As is
seen, even with rather small speed of movement, changes of the received power are very rapid.
This explains why multipath fading is also called short-term fading or small-scale fading.
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Figure 3.12 Time profile of the received power in the case of two-path fading

Clearly, this example is artificially simplified in order to present the phenomenon in the
most explicit way. In practice, the number of multipath signals L received simultaneously
may be very large and as a result the interference pattern becomes more complicated. The
phasor diagram in Figure 3.11b illustrates a situation of this kind. The chaotic character
of the distribution of reflectors or scatterers in the receiver environment makes the
interference pattern unpredictable and its statistical description most appropriate.
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Example 3.5.2. Figure 3.13 shows the time profile of the received power obtained by modelling
in Matlab of the propagation environment with five reflectors located equiprobably within the
square of side equal to the transmitter—receiver initial distance D = 30 km. The received power
is normalized to the average one. The wavelength and user’s speed are 0.3 m and 60 km/h,
respectively. The irregular character of the power change is fairly explicit as well as the
presence of deep drops of the received signal intensity.
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Figure 3.13 Time profile of the received power in the case of five-path fading

Due to the central limit theorem, a superposition of independent and nearly equally
contributing random summands tends to become Gaussian whenever their number
grows. Therefore, numerous multipath signals obeying these conditions produce
a bandpass Gaussian process at the receiver input. If a dominating deterministic
component (like the LOS one) is not present among them the resulting Gaussian process
will be a zero-mean one. But the envelope of such a process has Rayleigh distribution
(see Section 3.2) and thus we come to a model of Rayleigh fading channel. Now,
the received amplitude A, is not deterministic but, instead, random, meeting the
Rayleigh PDF:

24,exp(—A4%),4, >0

3.12
0, A4,<0 (3.12)

W(A,) = {

Since in the product 4,S(7), the ‘genuine’, actually measurable signal amplitude is split
between two cofactors, and this may be done arbitrarily, a convenient normalization is
assumed in (3.12) setting the mean square of 4, equal to one: 42 = 1. A plot of PDF
(3.12) is shown in Figure 3.14.
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Figure 3.14 Rayleigh PDF

Rayleigh fading is characteristic of numerous systems, including, along with commu-
nications, radar, navigation etc. The deep falls in signal intensity inherent in it are not as
a rule neutralized by sporadic rises of 4, when multipath signals arrive nearly in phase.
As a result, the overall effect of Rayleigh fading on the system performance appears to
be pretty destructive, as the analysis below corroborates.

3.5.4 Performance analysis

Consider as an example binary data transmission over the Rayleigh channel with a slow
and flat fading. The first of the attributes means that the interference pattern remains
stable during many symbols and the current reference phase may be retrieved from the
received signal by averaging over an appropriate time interval. In other words, signal
randomness does not exclude the BPSK from the available options. The second term
stresses that the delay spread of multipath signals 7, is small enough compared to the
duration T} of the individual BPSK bit: 74, < T}. As a result, successive BPSK symbols
do not overlap with each other, i.e. ISI (see Section 2.15) does not emerge. To under-
stand why the word ‘flat’ is relevant, return to (3.11) and note that an adequate model of
a multipath channel is a delay line with taps having delays 7; and complex weights
A;exp (jo;). The transfer function of such a system strongly depends on tap delays, and
when 7, < T is rather uniform (flat) within the signal bandwidth so that all signal
frequency components are distorted identically and signal shape remains unchanged.
The only sort of corruption which the signal undergoes due to multipath propagation in
such a case is Rayleigh amplitude fluctuations described by (3.12).

Figure 3.15 enlarges on these definitions. Plots simulated in Matlab show a slow flat
fading (a) as opposed to the fast flat one (b) for the case of the bell-shaped symbol pulses.
The second of the fading types is characterized by a rapid change of the interference
pattern in time so that distortions of successive symbols are practically independent.
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Figure 3.15 Slow (a) and fast (b) fading

Let the energy of the received signal corresponding to 4, = 1 be E. Then the energy
of a signal with another value of amplitude is E(4,) = A’E and the average energy
again equals E due to the normalization adopted above: E(4,) = A—,2E = E. Equation

(2.19) may be used to calculate a conditional error probability P.(4,), when the received
amplitude is assumed fixed and equal to 4,:

P4} = Q( %:”) —0 (A\/% = 0(4a)

where SNR ¢, = y/2E/Ny corresponds to the signal of energy E(4)=FE, ie. of
amplitude 4, = 1. Actual amplitude A, is random and fluctuates from one receiving
session to another according to the Rayleigh PDF (3.12). It is natural, then, to char-
acterize the performance of data transmission by the value of P.(4,) averaged over all
A,. Reserving now the term ‘error probability’, with designation P,, for this expectation
we have:
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where definition of the complementary error function Q( -) is used. Reversing the order
of the integrals gives:

I x/qp

2
/ 24,exp(—A7)d4, | exp (— %) dx

P, =

[ x? x?
11— exp(——)] exp(——)dx
I T 2

22 17 (¢ + 2))1
exp| — = Jdx — —— [ exp| -2 |dx
p( 2> \/27r0/ p{ 2q;

where the first term equals Q(0) = 1/2 and the second is brought to the same form if
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multiplied by ( 7 +2 ) /gs. Finally:

1 qb
Po==|1-—2— (3.13)
\a+2

To assess quantitatively the extent of the harmful influence of the fading, look at Figure 3.16,
which presents error probabilities of the BPSK transmission over the AWGN and
Rayleigh channels. As is seen, P, = 1073 in the AWGN channel may be guaranteed with
the bit SNR around 10dB, while the Rayleigh channel requires bit SNR of at least 27 dB,
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Figure 3.16 Bit error probability for AWGN and Rayleigh channels
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i.e. 50 times higher. This drastic energy loss due to the fading gets greater when higher
transmission reliability is necessary and becomes close to 25 dB (300 times) for P, = 1074

The physical explanation of a quite detrimental fading effect is rather straightfor-
ward. Sporadic sharp drops in signal intensity due to the multipath interference are
rather likely in the Rayleigh channel. Elementary integration of PDF (3.12) shows, for
instance, that the probability of 4, falling below the level 0.4 (SNR decreases by 8 dB) is
about 0.15. Then, as is seen from Figure 3.16 (dashed line), in those sessions where such
drops happen, the error probability can not be lower than 0.1 if reference SNR is 10 dB.
Since the share of such sessions is 0.15, their contribution to the total (average) error
probability will be no less than 0.1 x 0.15 = 0.015, i.e. 15 times bigger than the value
corresponding to the reference SNR. This effect cannot in any way be compensated by
possible favourable sessions with high SNR, since their contribution to the total error
probability is never negative.

The consequence of multipath propagation may potentially be even more dramatic
when the fading is frequency selective. This term, as opposed to the attribute ‘flat’,
defines the situation where the channel transfer function is not uniform within the signal
bandwidth. This happens if the delay spread covers several transmitted bits so that at
the channel output the previous bits overlap with the current one. To counter this ISI,
special filters (equalizers) are used, which rectify the channel transfer function non-
uniformity. On the other hand, frequency selectivity when used properly is a good resource
for countering fading by arranging the multipath diversity discussed in Section 3.7.

3.6 Diversity

The general idea of combating destructive multipath effects consists in diversity, which
means arranging several independent transmission channels or branches. Thanks to this,
despite every individual branch remaining liable to Rayleigh (or other) fading, the
probability that the interference patterns in all of them are simultaneously poor is
defined by the multiplication rule and thus diminishes radically. Take the figures of
the example at the end of the previous section and suppose that two identical independ-
ent branches are somehow organized. Then the probability of the same fall of signal
power in both of them at once is 0.15% = 2.25 x 1072, i.e. perceptibly smaller compared
to the probability of poor conditions in an individual branch. With a larger number of
branches this diversity gain becomes more and more substantial. Branches operate in
parallel, as though they secured each other, mitigating fading impairment.

In other words, we know that the poor performance resulting from multipath fading
is entirely due to the deep drops of SNR occurring from time to time. Hence, the final
objective of diversity techniques is to process jointly signals of the branches in a manner
that makes ‘better’ (higher SNR) branches more influential on the overall performance
in comparison to the worse ones. Such joint processing is called combining.

3.6.1 Combining modes

Various strategies for combining the results of processing signals arriving via different
branches may be used at the receiver. Suppose that there are n,; diversity branches
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altogether and let A4;, ¢; and o; be current signal amplitude, signal phase and noise
standard deviation in the ith branch, where i = 1,2, ..., n;. What, then, is the best linear
processing producing the maximum possible resultant SNR? Any linear form of the
branch responses u;,i = 1,2, ...,ny is their weighted sum Zf’:i | wiu; where weights w}
are in general complex. Then the resultant power SNR ¢ is just the ratio between the
magnitude of the deterministic component of this sum and the variance of its noise
component. The latter is simply the sum of branch noise variances weighted by |wvf\2,
since branches are independent. Therefore:

2
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(3.14)

The sum in the numerator of (3.14) may be treated as an inner product of two
ng-dimensional vectors whose components are w;o; and (A4;/0;) exp (j¢;). No inner product
can have modulus greater than the product of the lengths of vectors, which is well known
as Schwarz’s inequality [1,2]. Consequently:
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(3.15)

where q; = A4;/o; is voltage SNR of the ith diversity branch. When optimal weights:

wi = izleXP(—stz’)
g;
are taken, inequality (3.15) becomes an equality, i.e. maximal possible resultant SNR is
achieved. Such weights, as is readily seen, realize joined matched filtering of the
responses of the diversity branches. Technically it is possible only when accurate values
of all signal amplitudes and phases are known. Then signals can be summed coherently
with an appropriate amplitude weighting. This combining technique is often referred to
in the literature as the maximal ratio technique [5,18].

To assess the efficiency of combining, denote maximal SNR over all the diversity
branches by ¢max and introduce the diversity gain as Gy = ¢ /qﬁqax. Since
o q? < ngq?,,, no combining scheme can provide gain greater than n,, and the latter
is achievable only in the maximal ratio scheme under the additional stipulation that all
the diversity branches have the same SNR.

In practice, some other combining schemes find application, too, because maximal ratio
processing is rather demanding as to the extra arrangements necessary (to measure SNR
and phase in a diversity branch some special pilot signal may appear necessary etc.).
Alternative combining modes are equal-weight combining and selection of a maximum
SNR branch. The first approaches the maximal ratio mode in effectiveness if all the
diversity branches have nearly equal SNR. The gain of the second is close to that of the
optimal scheme if one of the diversity branches dominates over the rest in value of SNR.
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Certainly, these strategies can be combined with each other, e.g. several branches with the
best SNR values are selected and then their outputs are summed with equal weights.
Consider now traditional ways of organizing independent diversity branches.

3.6.2 Arranging diversity branches

The traditional ways to set up independent diversity branches may be categorized as
follows:

Space diversity
Frequency diversity
Time diversity
Polarization diversity
Multipath diversity.

Space diversity implies creating several independent propagation paths at the expense of
involving multiple antennas, which explains the other popular name for this technique:
antenna diversity. Duplicating antennas may be used at the receiving side as well as at the
transmitting side. Being spaced from each other by a distance of 7-10 wavelengths or
more, they provide practical independence of parallel interference patterns at the
receiver input. When used at the receiver (Figure 3.17) (receive diversity) antenna
diversity is most effective, since additional antennas utilize signal energy which other-
wise would not be captured at all. In this case diversity signals are separated automat-
ically since different antennas receive them. Being matched-filtered individually, they
may be further combined as described above.

Transmitting antenna diversity (transmit diversity) is not that straightforward. First,
as is seen from Figure 3.18, a limited total transmitter energy resource should be divided
between several transmitting antennas. Second, the receiver antenna receives the mix-
ture of signals emitted by all transmitting antennas. Therefore, some measures should be
taken to provide an opportunity for separation and individual processing of those
signals by the receiver before combining. These factors make this sort of diversity a
sophisticated optimization problem, solving which is the subject of a special branch of
communication theory called space—time coding (see Section 10.3).

Reflector

Transmitter Receiver

Figure 3.17 Receive antenna diversity
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Reflector

Transmitter K Receiver

Figure 3.18 Transmit antenna diversity

Certainly, when the technological constraints allow it, the combination of transmit
and receive antenna diversity may be used to gain maximal benefits.

The idea of frequency diversity is based on the concept of the channel coherence
bandwidth. This notion determines the frequency range within which fading is con-
sidered as flat, i.e. distortion of signal frequency components is strongly dependent.
On the other hand, the harmonics with frequency space beyond the coherence band-
width may be treated as independently distorted by the channel. As was already under-
lined in the previous section, the frequency range of the flat fading depends inversely on
the delay spread, so the wider the range of dispersing signals in time, the shorter the
coherence bandwidth. Evidently, transmitting the same signal simultaneously at ny
carriers whose frequencies are offset by coherence bandwidth or more creates ny
diversity branches. We may say that frequency diversity puts frequency selectivity of
fading to good use. Figure 3.19 gives an elementary clarification of the idea. The waves
of two wavelengths )\,; and )\, propagating along the same couple of paths have
identical geometrical propagation differences 6. However, the phase differences between
the signals of the two paths are individual for each wavelength and equal to 27/\,,;
and 276/ )\, respectively. When one of these phase differences leads to attenuation of the
resultant signal the other may appear less destructive. With many parallel propagation
paths present statistical interpretation comes into force, and frequency difference
exceeding the channel coherence bandwidth provides the independence of diversity
branches in this scheme. An appropriate choice of frequencies in this diversity scheme
provides separation of branches at the receiver with the help of bandpass filtering.

Reflector

Ay 61 =216\

=276\,

>
1
Receiver

Transmitter

Figure 3.19 Frequency diversity
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Time diversity exploits time-variance of the multipath pattern. Even when the receiver
does not move, the multipath profile may be unstable due to the motion of the
transmitter or surrounding reflectors. Thereby Doppler scattering of the received signal
arises, and the greater is its spread, the smaller is the coherence time of the channel,
i.e. the time interval during which the received signal power remains nearly stable.
Consider again the time—frequency duality: the correlation range in the frequency
domain (coherence bandwidth) is inverse to the spread in time (delay spread), while in
the time domain (coherence time) it is inverse to the frequency shift (Doppler) spread.
Since at the time moments spaced apart by coherence time or more, fading patterns may
be treated as independent, retransmission of n,; replicas of the same information at
appropriate time intervals creates n,; diversity branches. With a slight modification this
principle is universally used in telecommunications in the form of interleaving.

Polarization diversity, which exploits the difference of multipath profiles of waves
with different polarization, has not yet found wide application. As for the last item in
the list above, it possesses quite an important role in our context and will be discussed
separately in the next section.

3.7 Multipath diversity and RAKE receiver

A conventional frequency diversity touched upon above implies parallel transmission of
the same signal on several carriers, the spacing between them being bigger than the
channel coherence bandwidth. Typically this technique is used when the signal spectrum
is narrow enough compared to the coherence bandwidth to make the fading flat. The
other version of frequency diversity is multipath diversity, exploiting signals with
spectrum deliberately extended beyond the coherence bandwidth. Thereby fading
becomes frequency selective, allowing in principle time resolution of multipath signals.
Thus, the multipath diversity scheme is based on the fact that the signals propagating
along the different paths reach the receiver with different time delays. Suppose that the
resultant received signal with the complex envelope (3.11) is passed through the filter
matched to the signal s(¢). Then, taking into account filter linearity and the connection
between signal ACF and the matched filter response (see Section 2.11), we will have for
the complex envelope S,f(t) at the filter output:

Siy(1) =D AiR(t — 7 — T) exp(j) (3.16)

where R(7) is ACF of the reference signal complex envelope S(7) defined by (2.66) and T,
as usually, denotes the duration of the signal s(¢). Let the signal correlation spread 7, i.e.
ACF time-extension, be no greater than the minimum mutual delay of the successive
multipath signals 7., = min{7; — 7;_1}: 7e < Tmin- It is obvious that in such a situation

all multipath signals after the matched filter will not overlap. Since they are fully
resolved in time and do not interfere with each other, we may treat them as signals of
the independent diversity branches and process according to one of the combining
algorithms described above. If, for instance, their time positions, amplitudes and initial
phases are known (say, preliminarily measured using a separate pilot channel), maximal
ratio combining is the best choice.
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It should be clear that to realize this multipath diversity scheme, a signal with a short
ACEF is necessary. As the discussion of Sections 2.12 and 2.15 showed, a ‘brute force’
solution of this task exists, consisting in employing short signals. This, however, means
transmission of high peak power, which cannot be afforded in numerous cases. Much
more attractive is the use of special signals featuring time-compression in the matched
filter, i.e. having correlation spread small in comparison to duration: 7. < 7. These
signals can only be found among spread spectrum ones, so we may add to the list of the
merits of spread spectrum one more advantage: feasibility of organizing the multipath
diversity scheme.

Multipath diversity is unique in the sense that it radically changes the attitude
towards multipath effects, which at first sight are taken as implicitly harmful. As the
discussion above exhibits, reflection of waves has a fruitful side, too. Actually, any
contributing reflector directs to the receiver part of the emitted energy which would
otherwise be entirely lost. When these reflected signals may be separated from each
other (time-resolved), this energy is utilized, improving the system performance against
that in their absence. The channel itself, in effect, creates diversity branches in this
scheme, the only problem being adequate signal design allowing the multipath replicas
to be resolved.

Example 3.7.1. Consider the illustration of the diversity scheme applied to digital communications
given by Figure 3.20. Matlab is used to simulate the BPSK transmission with bit duration T over
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Figure 3.20 Multipath effects in BPSK transmission: (a) plain signals and (b) spread spectrum
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the channel whose three paths have mutual delays 7» — 71 = 73 — 72 ~ 0.15T. The amplitudes of
the multipath signals are Ay = 1, A, = 0.8, A3 = 0.9, and the phases of the second and third are
opposite to the phase of the first. For the sake of transparency, only baseband equivalents
(complex envelopes) of all signals are shown. The left column (a) corresponds to the
transmission of one bit by a plain rectangular pulse, zero bit content being sent by positive
polarity (upper plot). The second plot of the column shows the resultant signal at the channel
output, ignoring noise. Although ISI exhibits itself by distortion of the initial part of a bit pulse, the
major portion of the pulse undergoes flat fading. The lowest plot demonstrates five superimposed
realizations of the matched filter response to the resultant signal, in the presence of noise. The
destructive effect of multipath propagation is clearly seen: reliable decisions on the transmitted
bits are hardly possible at all.

As an opposite example, column (b) relates to the transmission mode, where every bit
manipulates the polarity of a spread spectrum signal, specifically a binary Barker code of
length N = 13 (see Section 6.4). The upper plot shows three such pulses manipulated by the
same bit pattern as earlier. In the second plot a resultant noiseless signal at the channel
output is given. The lowest plot demonstrates the matched filter response to the resultant
signal corrupted with white noise of the same intensity as in the previous case. The three
distinctive peaks per one transmitted bit are all available to retrieve the transmitted data with
high confidence. Assuming the channel model is known beforehand, the samples may be
taken at the accurate moments of the maximums of each noiseless multipath component at
the matched filter output. As is seen, a properly chosen spread spectrum bit pulse provides
resolution of all multipath components at the filter output with no mutual interference. The
three samples may then be combined optimally, i.e. weighted proportionally to their amplitudes
and summed after alternation of the polarity of the second and third components. An
equivalent realization of combining is shown in Figure 3.21, where the tapped delay line is
used to align in time three noiseless multipath peaks at the filter output. Then the non-delayed
waveform weighted by —Az = —0.9 and the one delayed by 5 — m» weighted by —A, = —0.8
are summed with the waveform delayed by 75 — 74 to produce the optimal combiner output.

The voltage SNR of the output is /1 + A3 + A2 ~ 1.56 times higher compared to that of the

first path.

The SNR gain is apparent in Figure 3.22, where the upper plot repeats the matched filter
output of Figure 3.20b and the lower plot shows the output voltage of the adder. Sampling the
adder output at the moments 5+ T, 73+ 2T, ... and fixing the polarities of the samples
provides the decisions on the transmitted bits.

From matched filter Delay ) Delay
73772

l i To decision

N unit

X Y +—e :

A3 Ay !
1

Sampling at 73 +iT

Figure 3.21 Maximal ratio combining for the channel of Figure 3.19
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Figure 3.22 Outputs of the matched filter and adder

The multipath diversity principle was proposed by Price and Green in 1958. Since
then it has been widely known by the nickname RAKE, because the peaks at the
matched filter output (Figures 3.20 and 3.22) resemble the fingers of a popular garden
implement.

Numerous implementations of the RAKE algorithm are around. One of them uses
ng parallel correlators instead of a matched filter, n; being the number of fingers,
i.e. exploited multipath diversity branches. This structure is most practical when delays
of multipath signals are estimated precisely and may be considered as known.
A correlator with reference signal delayed by 7 outputs the value equal to the sample
at the matched filter output at the moment 7 + 7. Then, since only samples at the
moments T+ 7, i =1,2,...,n,; are necessary to make a decision, we may use ny
delayed replicas of the signal as references in the correlators, thereafter combining their
outputs in an appropriate manner. The advantage of such a structure compared to the
matched filter one is that for a complicated spread spectrum modulation, implementa-
tion of the correlator is often much more feasible than that of the matched filter, since,
unlike the latter, the former computes only a single sample of the correlation (see
Section 2.11). With maximal ratio combining a correlator-based RAKE receiver looks
as shown in Figure 3.23 (a complex-envelope-processing version is presented). To
emphasize the practical role of the RAKE diversity it is enough to refer to the 2G
(IS-95) and 3G (UMTS, cdma2000) cellular CDMA standards, which employ this
principle as an integral part of their philosophy.
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Figure 3.23 Correlator-based RAKE receiver
Problems

General directions

e Ifthe shape of a signal or/and interference spectrum is not specified take it as rectangular.

e The term ‘matched filter’ is used for the filter matched to signal against AWGN
background.

e Where the barrage jammer is considered neglect AWGN.

3.1.

3.2

A system needs the highest possible ratio of useful signal power to total interference
power, including AWGN and a jammer. A narrowband jammer is present. Which
of the two strategies is better: ignoring the jammer or band-climination filtering, if:

(a) Jammer power equals AWGN power within the signal bandwidth and jammer
bandwidth is half of the signal bandwidth?

(b) Jammer power is 6 dB below AWGN power within the signal bandwidth and
jammer bandwidth is a quarter of the signal bandwidth?

(c) Jammer power is 3dB above AWGN power within the signal bandwidth and
jammer bandwidth is a quarter of the signal bandwidth?

Spectra of the signal and narrowband jammer are given in Figure 3.24. What is the
most harmful central frequency of the jammer when a receiver ignores the jammer
and when it employs band-elimination filtering?
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Figure 3.24 Signal and jammer spectra
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3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

In some system power SIR at the matched filter output degrades 101 times as
compared to power SNR, while the system can preserve its operation capability
with only two-times degrading SIR. What should be changed in the signal, SNR
remaining constant, if

(a) Only plain signals are allowed?
(b) Signal peak power cannot be raised (what should the signal processing gain be
in this case)?

In some system a band-elimination filter neutralizes the narrowband jammer. Due
to this, the matched filter SNR degrades by 3 dB.

(a) What should be done to the plain signal duration and amplitude if only 2%
degradation in power SNR is tolerable (SNR in the absence of band-elimination
is fixed)?

(b) Isit possible to push degradation below 2% without increasing signal power? If
so, what should the signal processing gain be?

A system can operate with SNR no smaller than 10 dB. Due to a barrage jammer
SNR drops to —3 dB. How could the signal parameters be changed to neutralize the
jammer, if:

(a) Only plain signal of the fixed energy is allowed?

(b) Only plain signal of the same peak power can be used?

(c) Peak power and energy of the signal are fixed with no other constraints?

(d) Peak power of the signal is fixed and its bandwidth can be increased only 10
times?

Find the processing gain in cases (c) and (d).

In conflict with a barrage jammer transmitter, a system increases signal duration by
4 times with simultaneous halving of signal power and widening of the bandwidth
by 50 times. The jammer transmitter is capable of increasing its power no more
than 13dB. Who will be the winner in this game?

A signal occupies two separate sub-bands of identical width W,. Total signal
energy is distributed between them in the proportion 9:16. In the receiver two
matched filters process both sub-band parts and their outputs are combined
optimally to maximize a resultant SNR. There is a barrage jammer transmitter.
What is the most harmful distribution of its total power between the signal
sub-bands?

Matched filter SNR for an intended receiver equals 14 dB. The processing gain of
the signal WT = 400. Find:

(a) Ratio of power spectrum densities of the signal and background AWGN.
(b) SNR at the integrator output of an interceptor radiometer.

In the BPSK data transmission system error probability per bit P, = 1.5 x 1073 is
required. A system designer wants the SNR of the interceptor radiometer to be no
greater than —10dB per one transmitted bit duration. What processing gain per
one bit would be satisfactory?
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

The interceptor radiometer SNR is —10dB per signal duration, whereas the
intended receiver needs SNR 12dB. Signal duration 7" = 100 ps. What should
its minimal bandwidth be?

Two spread spectrum BPSK data transmission systems are compared. The first
employs binary modulation to widen the bandwidth, providing processing gain of
100 per data bit. The second operates with a ternary modulation resulting in
processing gain of 50 per data bit. Which of them has better immunity to cracking
a modulation law, the data rate being the same?

Two spread spectrum BPSK data transmission systems operating at the same data
rate are compared. In the first an intended receiver SNR per data bit is 12dB,
while the interceptor radiometer SNR per bit is —12dB. For the second system
these parameters are 16 and —4 dB, respectively. Which of them is more immune
to breaking a modulation law?

A system designer takes care of the EMC of a developed system. The maximal
SNR provided by the new system over the entire zone covered by the old ones is
20dB. Any old system operates with a satisfactory quality if the extra power
spectrum density does not exceed —10dB compared to the background AWGN
spectrum. What should the minimum processing gain of the new system be?
There are two spread spectrum systems occupying the same total bandwidth and
operating inside the same geographical area. The maximal SNR over all the
intersection of their operational zones are 20 and 17 dB, respectively. For their
compatibility, the extra power spectrum density due to the emission of the other
system should be at least —7 dB below the natural AWGN level. Find the minimal
processing gain of each of the systems.

For normal functioning, the system operating at the wavelength A,, = 30 cm needs
signal-to-AWGN ratio ¢ = 14dB. Signal duration 7 = 100pus and the noise
temperature of the receiver 6§, = 1000 K. The transmitter antenna has gain of
5dB, while the receiving antenna is omnidirectional. Find the necessary trans-
mitted power for a free-space propagation model, if the system coverage zone
should have a radius no smaller than 30 km. How will this power increase for the
conditions typical of mobile telephone with the distance-attenuation exponent
3.84, no other adjustment of the free-space model being necessary?

A system survives if the received voltage SNR drops no more than 4 times below
the average predicted level. Find the probability of system failure due to long-term
fading with the standard deviation of the decibel power content equal to 9 dB.
There are two propagation paths: LOS and one through a reflector located 3 km
away from the LOS and equidistant from both receiver and transmitter. Find the
standing wave period in metres and the time interval between successive power
drops at a distance 12 km from the transmitter for a receiver moving at a constant
speed of 60 km/h if the wavelength is 30 cm.

Is it practical to use BPSK in the channel with fast multipath Rayleigh fading?
What binary transmission mode is advisable in this case?

Binary data are transmitted over a channel with lognormal long-term and Rayleigh
short-term fading. Due to the long-term fading, the signal power fluctuates around
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3.20.

3.21.

3.22.

3.23.

3.24.

27dB with standard deviation 12dB. Is bit error probability of 10~* achievable in
this channel without error-control coding?

There are two Rayleigh diversity branches with identical average signal energies.
Using average power SNR at the combiner output as a criterion, compare the
energy gains of two combining techniques: the maximal ratio one and selection of
a maximum SNR branch.

A signal of a system occupies bandwidth of 60kHz. The delay spread of the
channel is 20 ps. The total bandwidth is no greater than 300 kHz. How many
frequency diversity branches may be arranged?

There are four propagation paths with lengths 5km, 5.4km, 5.55km and 6 km.
A system transmits data at the rate R = 20 kbps. Estimate the approximate signal
bandwidth and minimal processing gain necessary for arranging a 4-finger RAKE
receiver.

The minimum difference of lengths of paths in a channel is 300m. The delay
spread of the channel is within 10 ps. The system transmits data using QPSK at
the rate 20 kbps. What is the maximal available number of RAKE fingers? Find
the necessary bandwidth and processing gain of the signal for arranging the
RAKE receiver.

A RAKE receiver splits the resultant signal at the output of a Rayleigh channel
into ny non-fading signals of equal power using maximal ratio combining. How
does the average power SNR at the combiner output differ from the case when the
RAKE algorithm is not used? In the light of the answer how can the energy gain
of the RAKE technique be explained?

Matlab-based problems

3.25.

Write a program illustrating the advantages of spread spectrum in countering a
narrowband jammer when the receiver does not use band-elimination filtering
(Figure 3.4).

(a) Form and plot two rectangular bandpass signals of the same duration T
(vectors of dimension 1000): a plain pulse and an LFM pulse with deviation
(40-50)/T (see Problems 2.55-2.56). Take carrier frequency to have 25-30
periods per signal duration.

(b) Form the matrix of a CW jammer with 10 rows, each row having frequency
equal to the signal carrier frequency and random initial phase uniformly
distributed over [—, 7).

(c) Form observation matrices for both signals by adding the signals to the
jammer. Set up the jammer level several (2-10) times higher than the signal
level. Plot the observations.

(d) Process the observations with corresponding matched filters. Plot the filter
output waveforms.

(e) Run the program, varying the jammer intensity and frequency, and explain
the results.
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3.26. Write a program illustrating the advantages of spread spectrum in countering a
narrowband jammer when the receiver uses band-elimination filtering (example
plots before and after band elimination are shown in Figure 3.25).

3.27.
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Figure 3.25 Simulation of band-elimination filtering

(a) Repeat items (a)—(c) of the previous problem.

(b) Calculate and plot energy spectra of signals and observations.

(c) Use band-elimination filtering forcing the spectrum component of the obser-
vation at the jammer frequency to zero.

(d) Return to the time domain and plot the signals after band-elimination filtering.

(e) Run the program for several combinations of jammer intensity and frequency,
and interpret the results.

Write a program illustrating the advantages of spread spectrum in countering a
barrage jammer (see Figure 3.5).

(a) Repeat item (a) of Problem 3.25.

(b) Form 10 jammer spectra for each of two signals so that they are non-zero only
within the bandwidth of a proper signal. Take spectral components to be
Gaussian complex values with zero mean. Plot power spectra of the jammer;

(c) Convert the jammer into the time domain and sum it with a proper signal to
obtain observations. Adjust the power of the jammer so that for both signals
voltage signal-to-jammer ratio are identical, lying in the range 0.5-1.

(d) Process the observations with a proper matched filter and plot the filter output.

(¢) Run the program, varying the signal and jammer parameters, and interpret
the results.
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3.28. Write a program illustrating the low-detection-probability feature of spread spec-
trum (see Figure 3.26).
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Figure 3.26 Simulation of detecting signals by the radiometer

(a) Repeat item (a) of Problem 3.25.

(b) Form 10 Gaussian noise realizations with zero mean and standard deviation
three times higher than signal amplitude.

(c) Sum the noise realizations and signal to produce 10 observations for each signal.

(d) Convert the observations into the frequency domain and plot observation
energy spectra for each of the signals. Interpret the plots in terms of the ability
of the radiometer to detect the signal.

3.29. Write a program illustrating the good electromagnetic compatibility of spread
spectrum systems, both between each other and with conventional systems.

(a) Form complex envelopes of three rectangular pulses of the same energy and
duration: a plain one and two LFM pulses with deviation W,; = 50/T, the first
with growing and the second with dropping frequency.

(b) For all three cases, calculate complex envelopes of a matched filter response
to the proper signal and two foreign ones.

(c) Plot the real envelope for each of 9 responses of the previous item.

(d) Interpret the plots in terms of electromagnetic compatibility.

3.30. Plot a logarithmic graph of attenuation of the received power with the distance
from a transmitter for the propagation model P, = k/D¢, e = 2, 3,3.84, 4.
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3.31. Write a program demonstrating the phenomenon of multipath flat fading.

(a) Form and plot a smooth plain bandpass pulse of duration 7 and carrier
frequency within (20-30)/7.

(b) Form and plot a sum of 10 copies of this pulse with equal amplitudes and
random initial phases which are independently and uniformly distributed over
[—m, 7]

(c) Plot the envelope of the resulting pulse.

(d) Run the program repeatedly and comment on the results.

3.32. Write a program demonstrating the validity of the Rayleigh model of short-term
fading (see Figure 3.27).

Res. envelope

Number of values

PDF
o
1

0 2 4 6 8 10 12 14 16 18 20

Resultant amplitude

Figure 3.27 Simulation of short-term fading

(a) Repeat item (a) of Problem 3.31.

(b) Form a 1000 x 1 vector of complex amplitudes, the ith component of which is
the sum of 20 exponents exp (j¢;), i =1,2,...,1000; j=1,2,...,20 with
all ¢;; independent and uniformly distributed over [—, 7].

(c) Plot several (3—7) example copies of the resultant real envelope of the pulse.

(d) Build up a histogram of real amplitudes of the resulting pulse based on
item (b).

(e) Plot the Rayleigh distribution, scale it properly and compare it to the histo-
gram of the previous item.

3.33. Write a program illustrating the antenna diversity technique (see Figure 3.28).
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3.34.

3.35.
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Figure 3.28 Simulation of receive antenna diversity

(a) Form and plot a plain smooth bandpass signal of duration 7 and carrier
frequency (20-40)/T.

(b) Form two delay profiles as vectors of 10 delays with random independent
components uniformly distributed over [0,77/10].

(¢) Form two complex envelopes of sums of 10 copies of the signal with initial
phases calculated in accordance with the two delay profiles.

(d) Plot two delay profiles and the corresponding resultant bandpass signals in a
form suitable for comparison.

(e) Run the program repeatedly and explain the results in terms of the diversity gain.

Write a program illustrating the frequency diversity principle.

(a) Form and plot two plain smooth bandpass pulses of the same duration 7 and
amplitude but with different carrier frequencies, e.g. 20/7 and 30/T.

(b) Form a delay profile as a vector of 10 delays independently and uniformly
distributed over [0, 77/10].

(c) Plotin a form convenient for comparison the delay profile and two sums of 10
copies of each signal with equal amplitudes and the initial phases calculated
according to the delay profile and carrier frequency.

(d) Run the program repeatedly, and explain the results in terms of the diversity gain.

Write a program illustrating the multipath diversity principle. Unlike what is
presented in Figure 3.20, use an LFM bandpass pulse.
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3.36.

(a) Form and plot two rectangular bandpass bit pulses of the same duration 7,
amplitude and carrier frequency about (30-40)/7, the first being plain and the
second being LFM with deviation W, =(20-30)/T.

(b) Set up a bit stream (5 to 6 bits) and arrange BPSK for both bit pulses. Plot the
transmitted signals.

(c) Add two delayed copies to the transmitted signal in both cases. Take ampli-
tudes of the copies equal to that of the transmitted signal and delays around
0.15T and 0.3T. Plot the resultant received waveforms.

(d) Calculate and plot matched filter response for each case.

(¢) Comment on the results.

Based on Problem 3.35, write a program demonstrating the effect of combining
the path signals in a RAKE receiver.
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Multiuser environment: code
division multiple access

4.1 Multiuser systems and the multiple access problem

Many modern wireless systems are of multiuser type. In a multiuser system multiple
communication links are arranged within the total time—frequency resource so that every
individual user is allowed to transmit or receive his specific data in parallel with the
others and independently of them. An instructive example of a multiuser system where a
single transmitter transmits data to multiple users is the downlink of a satellite system or
of a cellular terrestrial system. Each user receiver in such a system should be able to filter
out the data addressed to it individually from the observed signal containing data sent to
many users. Another case is the uplink of a satellite or a terrestrial cellular system, where
there are a number of parallel transmitters and the only receiver should separate and
detect the data of each individual user in the resulting observed signal.

In designing any multiuser system the principal issue is how to provide multiple
access, 1.¢. the ability for many subscribers to use the communication channel simultan-
eously with minimal mutual interference. To describe this problem mathematically,
suppose that the kth user’s data form a sequence by = (bx. 0, b, 1, - - . ), where by ; stands
for the ith symbol in the data stream of the kth user. This sequence in one way or
another modulates the specific kth user’s signal s;(7), producing the modulated signal
sk(z; br). Passing through the channel every such signal may acquire amplitude A; and
time delay 7, and is summed with the signals of other users so that the overall or group
signal reaching a receiver is:

K
s(tb1,bo, o b)) = Apsi(t — 7 by)
k=1

where K is the number of active, i.e. actively transmitting, users, and arguments after
the semicolon in the group signal stress its dependence on data of all active users.

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd



116 Spread Spectrum and CDMA

Certainly, the group signal is accompanied by channel noise n(f) and the resultant
observation is:

(1) = s(t;by, by, ..., bg) +n(f) = ZAksk(t — Ti; bie) + n(2) (4.1)

The receiver should retrieve the user’s data from the observation y(f). According to the
general ideas presented in Section 2.1, the key role in decisions on the received data
by, k=1,2, ..., K for the AWGN channel belongs to the (squared) Euclidean distance
between observation y(f) and various copies of the group signal s(z; by, by, ..., bk)
corresponding to all possible combinations of data of K users:

T
/[y —s(;b1,ba, ..., bg)) dt (4.2)
0

Substituting (4.1) into (4.2) and opening the brackets leads to the equation:

T
K K
d (S y = ||y|| 72214](21( bk + ZZAkAl/Sk(I — Tk;bk)sl(l — Tl;b/) dt (43)
0

k=1 I=1

—

where zi(by) is the correlation (inner product) of the observation y(f) and the kth user’s
signal modulated by the data sequence b, and delayed by 7:

~

zk(be) = [ y(0)si(t — s by) de (4.4)

o

Typically, estimating intensities and delays of all user signals precedes the decision on
data sequences so that parameters Ay, 74, Kk =1,2, ..., K in (4.3) and (4.4) may be
assumed known precisely. Then the optimal (ML or minimum distance) strategy of
recovering user data consists in substitution of all possible realizations of the sequences
bi, by, ..., bg in (4.3) and selecting those of them which jointly minimize the squared
distance (4.3)." Such a decision rule, called multiuser detection, may appear quite
impractical in a typical situation where the number of users K is measured in the tens
or more. As an example take the simplest case of a synchronous system with zero mutual
delays 7 =0,k = 1,2, ..., K and binary data transmission. With the observation inter-
val spanning only one bit, retrieving the individual bits of K = 40 users would require
testing 240 > 10! bit patterns of all users, which looks absolutely infeasible from an
implementation standpoint. We will revisit the issue of multiuser detection in Chapters 7
and 10.

!This rule remains adequate even if the receiver is intended to recover only the individual (kth) user informa-
tion sequence, as e.g. takes place in the downlink of a cellular mobile system. After estimating data of all users
the receiver just discards the unnecessary data of all users but the kth one.
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The so-called conventional or single-user receiver realizes an alternative decision rule
estimating each of the data sequences by separately by maximizing the correlation (4.4).
It is evident that this strategy coincides with the optimal (multiuser) one if and only if
the third term of (4.3) does not depend on data sequences by, k= 1,2, ..., K at all. To
meet the latter condition, one can use the modulation scheme possessing the following
properties: (a) the user’s signal energy does not depend on transmitted data (PSK, FSK);
(b) all user signals are orthogonal regardless of transmitted data. Both these require-
ments are expressed by the equation:

T

/Sk — T by é[(l — T],b]) dr = Eby (4.5)
0

Calling this multiple access mode orthogonal and returning to the material of Sections
2.3 and 2.4, we recollect that the maximal number of orthogonal signals is limited by the
total signal space dimension, and within the total bandwidth W, and time resource 7, no
more than 2W,T; bandpass orthogonal signals may exist. To derive from this the
maximal available number of users in the orthogonal multiple access scheme, let us
limit ourselves to M-ary PSK digital data transmission with fixed rate R bps. Assuming
that all user signals should be orthogonal on the time interval equal to the M-ary symbol
duration, we arrive at the equation 7, = (log, M )/R. Therefore, the maximal signal
space dimension is 2W,;T; = 2W,log, M )/R. When M = 2 (BPSK), each user occupies
only a one-dimensional subspace of the signal space, since only two antipodal pulses (i.e.
two collinear vectors) are necessary to transmit one bit (see Figure 2.5a). In this case the
maximal number of users coincides with the total signal space dimension. With M > 2
each user needs a two-dimensional subspace (i.e. a plane; see Figure 2.6¢), and all those
subspaces should be orthogonal according to (4.5), so that the maximal number of users
becomes two times smaller than the total signal space dimension. Combining these
results gives the upper bound of the maximal number of users in the orthogonal multiple
access scheme:

20,
R‘ M =2

K = (4.6)
W, log, M
205 7 (;52 M >2

In the following three sections we discuss briefly traditional ways of carrying orthogonal
multiple access into effect.

4.2 Frequency division multiple access

One of the simplest ways to fulfil requirement (4.5) is employing user signals whose
spectra do not overlap. The idea is fully allied to that of frequency-shift orthogonal
coding discussed in Section 2.7.2. This multiple access mode called frequency division
multiple access (FDMA) is illustrated by Figure 4.1a. If M-ary PSK is used for data
transmission at the rate R, the data symbol duration is 7, = (log, M )/R so that each
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Figure 4.1 Frequency (a) and time (b) division multiple access

user’s signal occupies bandwidth no smaller than W = 1/T, = R/log, M. Then the total
allowed bandwidth W, could accommodate no greater than W,/W = (W,log, M)/R
non-overlapping spectra. This is exactly the maximal number of users if M > 2, which
is the case shown in Figure 4.1a. When M = 2 and phase coherence is available each of
those spectra may be utilized by two users whose carriers differ by only quadrature
phase shift. As a result, the potential number of users in the FDMA scheme is subject to
bound (4.6). In practice, non-ideal filtering, master clock generator drifts and Doppler
frequency shifts may cause partial overlapping of the adjacent spectra, i.c. mutual
interference between different user signals. To neutralize these effects and preserve
separation of user signals a system designer is often forced to introduce guard frequency
intervals between adjacent spectra, which decrease the achievable number of users as
compared to bound (4.6).

FDMA is the oldest and classical multiple access mode commonly used in both
analog and digital wireless systems (radio broadcasting, TV, mobile radio etc.). Non-
overlapping spectra secure orthogonality, and hence separability of the user signals,
regardless not only of data but also of time delays, thanks to which no synchronization
between user signals is required. This fact is frequently referred to as a serious advantage
of FDMA (see Section 4.5 for more detail).

4.3 Time division multiple access

Another popular orthogonal multiple access scheme is time division multiple access
(TDMA), in which user signals do not overlap in the time domain (Figure 4.1b). The
idea is again borrowed from time-shift orthogonal coding (see Section 2.7.1). Specif-
ically to the case of M-ary PSK, it means that the whole available time resource
T, = (log, M)/R (in TDMA systems it is often called a frame) is divided into non-
overlapping slots of duration 7. If M > 2 (this case is shown in Figure 4.1b) every slot
may be used by only one user and the duration of the data symbol transmitted by it
cannot be smaller than the inverse total bandwidth 1/;. Therefore, the total number of
users is limited by the figure 7;/T = (W, log, M)/R. When M = 2 in the phase-coherent
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case two users may use the same slot having quadrature shifted carriers. As a result
we again come to the bound (4.6) for the maximal value of K, demonstrating the
theoretical equivalence of FDMA and TDMA in terms of the potential number of users
accommodated.

TDMA mode has found application in various systems, e.g. in 2G mobile radio
(GSM, IS-136 etc.). Although its simplicity is superficially attractive, limiting factors
should be mentioned too. First, every user’s signal occupies only a Kth (or perhaps a
K/2th) part of the frame, which entails increasing peak-power K (or K/2) times as
compared to the case of continuous emission in order to preserve the necessary signal
energy, i.e. SNR. Implementation problems related to this have been repeatedly
pointed out before. Second, strict synchronization is necessary between user signals at
the receiver input, since otherwise they will overlap and create mutual interference. At
the same time, in systems with migrating users, like the uplink of a mobile
telephone, the lengths of the propagation paths between the user transmitters and the
central station receiver are changing continually and over a wide range. Clearly,
synchronization of the user signals at the receiver input in such situations, although
possible in principle, might appear problematic technologically. The conventional way
of getting around these obstructions consists in introducing guard time intervals
between adjacent user signals, preventing them from being superimposed on each other
within the whole range of variation of their delays. Rather commonly the guard inter-
vals appear significant and may dramatically reduce the number of users compared to
the upper bound (4.6). The severity of the problem is typically alleviated when an
individual user’s slot carries not a single data symbol (e.g. a bit), but, instead, a burst
of n, symbols. Then guard intervals are necessary for separating only the bursts of
different users, which entails 7, times smaller guard-time overhead. On the other hand,
pauses between the successive bursts of the same user become 7, times longer, too. In
many systems (such as mobile telephone, where continuous speech exchange should be
maintained) long pauses are not acceptable, and this frequently puts a tough limit on the
length of bursts.

For these reasons, ‘pure’ TDMA is not often encountered in practice. For example,
the 2G mobile telephone standards combine TDMA and FDMA.

4.4 Synchronous code division multiple access

Both FDMA and TDMA distribute the total available time—frequency resource between
different users so that each user utilizes only his ‘personal’, user-specific fraction of it
and no users share common fractions. In FDMA this fragmentation is done in the
frequency domain (Figure 4.2a), and at the kth user’s disposal are the whole time
resource (T = T,) but only part W of the total frequency resource W,. When the
maximal number of users is a top priority, W = 1/T ~ W,/K. Splitting the time domain
in TDMA (Figure 4.2b) makes it possible for the single user to occupy the whole
available frequency range (W = W,) but only part of the total time frame
(T =1/W ~ T,/K). If the number of users needs to be maximized the resource frag-
mentation in both these orthogonal multiple access schemes makes each user signal
plain since its time frequency product WT = 1.



120 Spread Spectrum and CDMA

Wr % W,=W
W=W,/M
Tl 12 [ k... K
g
2
1 - >
T,=T del T,
T=T/M
() (b)

Figure 4.2 Resource distribution in FDMA (a) and TDMA (b)

On the other hand, with a large necessary number of users K the total time—frequency
product has to be large too (W, T, > 1; see (4.6)), and if every user’s signal occupied
both the total available bandwidth (W = W,) and time interval (T’ = T;) we would have
an orthogonal multiple access scheme in which all user signals are spread spectrum ones.
Such a multiuser system would enjoy all the advantages of spread spectrum technology
studied in the previous chapter.

Let us assume that the transmission may be arranged in a manner providing zero
mutual delays between all user signals at the receiver input. Then without sacrificing
generality all the absolute delays can be set equal to zero: 7, =0, k=1,2, ..., K.
Take an arbitrary family of W,T, orthogonal spread spectrum signals (see Section
2.7.3), e.g. Walsh functions, and employ each of them as a user signal for M-ary PSK
data transmission. An individual spread spectrum signal assigned to the kth user is
called the kth signature. Every signature occupies the total bandwidth W, and the total
time frame 7T, (Figure 4.3), transmitting log, M bits of data over the interval 7;. If
M > 2 this multiple access mode may serve up to K = WT = W, T, = (W,log, M)/R
users, while BPSK allows doubling of K by permitting two different users to exploit
quadrature-phase-shifted copies of the same signature. Obviously, we again have the
maximal possible number of users determined by (4.6), exactly as for both FDMA and
TDMA

T,=T

Figure 4.3 Resource utilization in spread-spectrum orthogonal multiple access
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In the considered multiple access mode an appropriate signature encoding provides
orthogonality of the user signals instead of fragmentation of the time or frequency
domain. That is why it has the name code division multiple access (CDMA). The
advantages of CDMA compared to classical FDMA and TDMA (jamming immunity,
low detection probability, opportunity to involve the RAKE algorithm etc) follow
automatically from the spread spectrum nature of CDMA signatures. At the same time,
signature synchronism is critical for their orthogonality and user separation at the
receiving side. In order to distinguish this version of CDMA from the one to be studied
in the next section, the term synchronous CDMA (S-CDMA) is used. Synchronous mode
is easily achievable in systems where only a single transmitter (like the base station of a
cellular network) transmits simultaneously individual data streams, each being
addressed to a specific user (e.g. mobile station). That is why S-CDMA constitutes the
basis of the physical layer of downlinks in 2G (IS-95) and 3G (UMTS, c¢dma2000)
CDMA cellular networks. In parallel, the core idea of S-CDMA is used in both down-
link and uplink of 3G standards for arranging the so-called multi-code transmission (see
Section 11.3).

4.5 Asynchronous CDMA

A situation typical of numerous applications is where delays 7, may change over a wide
range, making synchronization of signatures at the receiver input problematic or even
impossible. An instructive example of this is an uplink of a mobile cellular system where
users migrate over the cell, as a result of which the distances between them and the base
station change constantly, as do the arrival times of the user signals at the base station
receiver. In principle, each user knowing his instantaneous location relative to the base
station, and therefore propagation delay 7, is capable of transmitting his signal with an
advance 7;. Thereby all path delays will be compensated for and all the user signals will
be synchronized at the base station receiver. This operational mode, however, places
excessive demands on the complexity of equipment, and in many cases can hardly be
regarded as commercially viable.

Let us analyse the consequence of the asynchronous character of the received user
signals. First of all, is it possible to preserve the orthogonality of signals in a wide range
of mutual time shifts? Take two signals u(¢) and v(¢) and calculate their cross-correlation
function (CCF) R,,(7), i.e. the inner product of u(¢) and a copy of v(¢) time-shifted by 7
as a function of the argument 7:

R, (7) = / u(t)yv(t —7)de

Applying the Parseval theorem gives:

o0

Ru(7) = / a(f)7 (f) exp(~j2nf ) df

—00
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If the goal is signal orthogonality independently of mutual delay 7, the equality
R,,(7) = 0 should hold under all values 7, which due to the Fourier transform linearity
is possible if and only if #(f)v(f) = 0 everywhere in the frequency domain. This tells us
that two signals are orthogonal under arbitrary time shifts if and only if their spectra do
not overlap. But the multiple access scheme with non-overlapping spectra is FDMA!
Hence, asynchronous orthogonal multiple access is realizable only with FDMA, which
is often proclaimed as one of the main advantages of FDMA.

But what sort of penalty will accompany an attempt to realize CDMA when signa-
tures are not synchronous at the receiver input? Since the signatures of the different
users within CDMA have overlapping spectra, they cannot remain orthogonal in a wide
range of mutual delays, and equality (4.5) cannot be true for arbitrary values of 7, 7
and data sequences by, b;. As a result inter-user interference emerges, which is a non-zero
response of the receiver intended for the kth user to signals of other users.

Consider the kth user conventional receiver. With no loss of generality we may put
7 = 0, rewriting (4.4) as:

T

/ P(0)si(t;bi) d (4.7)

0

According to the single-user rule, the estimate lA)/c of data b, should maximize the
decision statistic zi(bx) as a function of by. Substituting (4.1) (at this step we should
replace by of (4.1) by bj in order to mark differently a genuine transmitted data b),
from that assumed in the course of decision making by) into (4.7) presents zx(by) in the
form:

T
Zk(bk) = Ak/Sk(l; b;)sk(t; bk) ds
0
T T
+ A[/ s(t T],b[ se(t;bi) dl‘Jr/l’l si(t; by) dt (4.8)
w0 0

The first and last terms of (4.8) give, respectively, the contribution of the proper, i.e. kth,
user signal, and thermal additive noise into the kth user receiver effect. If no side users
were present (K = 1) the second addend would be zero and the whole problem would be
no different to the one considered in Chapter 2. With K > 1 and arbitrary signature
delays this term differs from zero, expressing the contribution of other user signals to the
kth receiver output effect, i.e. mutual or multiple-access interference (MAI).

An easy way to assess the influence of MAI is to treat all the alien signals as random
noise-like processes similarly to what was frequently done in Chapter 3. In any practical
asynchronous CDMA system, measures should be taken to equalize the level of all user
signals at the receiver input in order to mitigate the near—far problem. The latter implies
that MAI created by alien users which are much closer to the receiver than the kth user
may significantly overpower the useful signal of the latter due to the strong dependence
of the received power on distance (see Section 3.5.2). Therefore, we may assume that,
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thanks to the efficient power control, all Ay, k=1,2,...,K are the same; in other
words, the powers of all signals are identical and equal to P. Then an /th side-user
noise-like signal whose energy is assumed to be uniformly spread over the bandwidth
W creates extra noise power spectrum density N; = P/W added to the thermal noise
spectrum. Since there are K — 1 independent alien users altogether, the total MAI
spectrum density is Ny = (K — 1)N; = (K — 1)P/W. Now we may determine the power
SIR, i.e. signal-to-interference ratio ¢7 embracing both MAI and thermal noise:

. 2E 2E
U= No N Not (K- 1D)(P/W)

(4.9)

Typically the number of users K or/and processing gain of every signature are large
enough to enforce the mechanism of the central limit theorem and treat the second sum
in (4.8) as a Gaussian random value. This justifies the Gaussian approximation of MAI
used universally and meaning that all the results obtained in Chapter 2 for the classical
reception problems (error probabilities, estimation precision etc.) are applicable to the
similar multiuser problems after replacing SNR ¢> by SIR ¢7. For example, if data are
transmitted by BPSK the bit error probability for any user is calculated via (2.19) where
¢3 substitutes for ¢> = 2E/Nj.

Equation (4.9) makes it possible to estimate the maximal number of users which
asynchronous CDMA can accommodate within the total time—frequency resource WT.
It is readily seen that in the multiuser environment, absence of thermal noise does not
lead to error-free decisions at the receiving side since MAI retains SIR finite and equal
to so-called floor SIR:

, 2E _2PT  2WT
U= (k-—1)P/w)" (K-1)P/W) K-1

(4.10)

The last result shows that the floor SIR and, hence, floor reception fidelity is exhaust-
ively determined by the time—frequency product, i.e. spread spectrum processing gain
WT and number of users. As long as inequality ¢7 < qﬁf is always true the maximal
possible number of users may be limited by the relation:

2WT
K < !/I; +1 (4.11)
a7

where ¢7 stands for the required SIR dictated by the necessary fidelity of reception in the
analysed system. To be specific, consider a BPSK or QPSK data transmission system
where the bit error probability should be provided no worse than P, = 1072. From
(2.19) or Figure 3.16 (dashed line) it may be seen that in the no-fading case SIR of about
7dB (g3 = 5) is necessary to meet this demand. This produces the following estimate of
the potential number of users:

K<=—+1 (4.12)
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At the same time, FDMA is capable of accommodating WT users” within the same total
time—frequency resource (W, = W, T, = T), which is about 2.5 times greater than the
right-hand side of (4.12). This leaves a rather bleak impression about the prospects of
asynchronous CDMA in comparison to FDMA. In the next section, however, we will
demonstrate that in the systems where the frequency resource needs to be reused in
spatially distant areas (e.g. cellular ones), asynchronous CDMA significantly outper-
forms FDMA in the maximal number of users.

4.6 Asynchronous CDMA in the cellular networks

4.6.1 The resource reuse problem and cellular systems

When creating a new commercial multiuser wireless system the system designer naturally
intends to serve as many subscribers as possible, at the same time being tightly bound by
some fundamental limitations. The first of these is the power constraint limiting the
spatial zone covered by a single transmitter. The curvature of the Earth and fast
attenuation of signal intensity with distance, which is characteristic of the UHF band
utilized by systems akin to mobile radio (see Section 3.3), rule out a practical opportu-
nity of covering zones whose radius exceeds tens of kilometres. Another tough restric-
tion is imposed by the time—frequency resource, i.c. allocated spectrum band and data
rate required. Take, for example, the physical layer bandwidth of cdmaOne (IS-95)
W, = 1.25MHz. With rate of encoded voice data R = 19.2bps and BPSK data mod-
ulation used in the downlink the potential number of active users according to (4.6)
is K = 130. This number is obviously too small for coverage of a densely populated
urban area and this is all the more true if the service should also include high-speed
(e.g. multimedia) data transmission along with a telephone connection.

An effective way of getting around these obstructions is offered by a cellular network
topology involving multiple base stations, each servicing its specific zone (cell) and
covering collectively the total necessary area. The base station (BS) transmitter of
relatively low power sends signals to the users (or mobile stations, MS), which are
located within the served cell, and MS receivers form the downlink. The uplink includes
the MS transmitters and BS receiver. All BS operate in strong coordination and the
whole network has connections with fixed telephone and data transmission networks.
When an MS moving across the system coverage zone leaves a current cell, the BS of
the adjacent cell automatically takes over servicing this MS: this procedure is called
handover. Within the framework of the cellular philosophy the wave attenuation
manifests its favourable feature, allowing reuse of the same physical sub-channels
(e.g. frequency sub-bands in FDMA or time slots in TDMA) by different transmitters,
provided they are distant enough to secure a low level of their signals over the foreign
coverage zones. As a result, just increasing the number of cells may flexibly solve the
problem of raising the number of users and extension of a coverage area. In sparsely
populated regions macrocells (measured by kilometres to tens of kilometres) may meet

2We ignore here the potential doubling of the number of users by reuse of the same subcarrier frequency with a
quadrature phase shift, since this opportunity is not feasible if different users are not time-synchronized.
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Figure 4.4 Cellular network configuration

coverage demands while in congested zones microcells (hundreds of metres) or even
picocells (tens of metres) are likely to be necessary. It is universally accepted that an
individual cell of a cellular network be approximated by a hexagon, owing to which the
network pattern resembles a honeycomb (Figure 4.4).

Let us estimate the efficiency of utilization of the time—frequency resource in a
cellular system employing classical FDMA or TDMA multiple access schemes. To
avoid unnecessary repetition and allowing for equivalence of FDMA and TDMA in
number of users (Section 4.3), we will use only FDMA terminology. It is obvious that
the cell radius cannot be bigger than the radius of total wave attenuation but the
latter, as was pointed out, should be at least two times smaller than the distance
between the centres of cells utilizing user signals with identical frequencies. If the first
condition fails, MS near the edge of a cell will receive too weak a BS signal and
contact with the BS will appear unreliable. Violation of the second condition will
entail inter-cell interference, since again the MS travelling near the edge of the cell may
receive along with the proper signal of its own BS the signal of an alien BS commu-
nicating with another MS (serviced by this alien BS) at the same frequency. In other
words, the frequency sets of all cells around any specific cell should differ from the set
used by the central cell. Thus, a configuration arises called a cluster within which no
frequency set may be reused. A regular honeycomb structure where frequency alter-
nation between cells meets the condition above may exist for only some specific sizes
of cluster. The most typical is the seven-cell cluster highlighted in Figure 4.4. Hence,
only one seventh of the total number of physical channels (frequencies) granted by the
total time—frequency resource W,T; of the system may be utilized by a single cell. This
gives the following estimation of the maximal number of users per cell in an FDMA or
TDMA system:

_wT

Ke=—%

(4.13)

where asynchronous operation typical of uplink is assumed. In the light of this result the
pessimistic conclusion about the prospects of asynchronous CDMA made in the pre-
vious section needs a serious revision.

4.6.2 Number of users per cell in asynchronous CDM A

Let us recall that asynchronous CDMA is spread spectrum based and every signature
occupies the whole available time—frequency resource. Consider the uplink of a CDMA
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cellular system in which all cells share the same frequency band with no distribution of
the spectral resource between them. In other words, signatures of all cells, including
adjacent ones, occupy the same spectral band, and the cluster consists of only a single
cell. Clearly, the BS receiver of a specific cell will receive MAI not only from users of the
cell but also from MS served by alien base stations. The natural question arises: how
great is the contribution to the total MAI of the component caused by the MS
transmitters of the outer cells? To estimate the intensity of this inter-cell MAI, look at
Figure 4.5, where two contiguous cells C;, C, are approximated by circles of radius D..
There are two BS marked as BS1 and BS2 and the MS within the zone of coverage of
BS2. Despite the fact that the MS is served by BS2 its signal will also fall at the input of
receiver BS1, contributing to the inter-cell MAI. Denote the distances from the MS to
BS1 and BS2 as Dy and D», respectively, and recall that precise power control is essential
for any asynchronous CDMA system to get around the near—far problem. Thanks to the
control loop, the power of the signal received by BS2 from the MS is permanently
maintained constant and equal to P. If the power transmitted by MS is P, then
according to the propagation model introduced in Section 3.5 P = kP,/D. On the other
hand, the signal propagating from MS to BS1 will suffer attenuation defined by the
distance D, so that the power received by BS1 P,; = kP,/D{. We can use the previous
equation to express P, in terms of power P of the useful signal at its ‘own’ BS receiver
input:

Po(Ds,0) = (%y.]) (4.14)

1

where MS coordinates D5, 6 (see Figure 4.5) emphasize the dependence of P,; on the MS
position inside Cj.

Now average the result (4.14) over all the cell C; assuming that all positions of MS
within the cell are equally likely, i.e. joint PDF of the polar coordinates
W(D,,0) = D2/7TD3 inside C, and zero outside. Then the mean power P,; of MAI
created by a single alien MS from the neighbouring cell is:

D. 27
P De+1
;l —// rl Dz, Dz, )dDzde_ // deDz.
wD?2
0 0

Figure 4.5 Computation of inter-cell MAI
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With attenuation exponent e = 4 appropriate for many mobile communication scen-
arios, integration in the last equation may be completed analytically [20]. By the cosine
theorem D? = (2D.)* + D3 + 2(2D.)D, cos § and:

D, 2w

1 =
—_ P D3 2P
r =—2/ . 5 dedDzz—// dodx
WDCO / (4D% + D3 +4D.D; cos0) ™) x2+4xcos9+4)

The internal integral here may be evaluated by trigonometric substitution or found in
tables (e.g. [21]), after which the integrand in x becomes (4x° 4+ x7)/(4 — x?). Resorting
again to the integral tables [21], we arrive at:

4 41
P = P(16ln§— ?> <0.05P

This figure should be multiplied by the number of users per cell K, and also by the
number of adjacent cells surrounding the specific one. With hexagonal cell representa-
tion the latter is 6 and the total power of the inter-cell MAI induced by all adjacent cells
is no greater than 6 x 0.05 x K.P = 0.3K_P. Strictly speaking, this estimation should be
further incremented to cover inter-cell MAI from the more remote cells than just the
neighbouring ones. However, it is quite predictable from the calculation above that this
contribution will be negligible in comparison with the estimation just obtained [20].
Reserving some safety margin, we can therefore say that overall inter-cell MAI power
Proxr < 0.5K P, while internal MAI created by K. — 1 ‘own’ mobiles has, as earlier,
power P; ;, = (K. — 1)P. The floor SIR (4.10) may now be modified to allow for both
internal and external MATI:

> 2FE . 2wr
Ty = (K. — 1)(P/W)+0.5K(P/W) 15K, —1

(4.15)

This result admits further revision for ‘pure’ telephoning, since in the dialogue every
party does not talk continuously and spends some time reflecting and listening. Cer-
tainly, during such pauses the transmitter of a silent speaker may be switched off or at
least operate at much lower power. Actually, this opportunity has already been
exploited in 2G non-CDMA mobile telephone systems to extend battery lifetime. How-
ever, only in CDMA standards does it allow MAI to be reduced simultaneously,
thereby, potentially increasing the number of users served by one cell.

A typical figure for the voice activity factor, i.e. the fraction of total conversation time
during which the phone speaker is talking, is 3/8. Correspondingly, weighting the
average MAI power by this factor will transform the floor SIR above as follows:

,  16WT
=435k -3
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Solving this with respect to K, gives a much more encouraging estimation of the number
of users in CDMA as compared to the original one (4.12), obtained irrespective of a
specific system topology:

R2wrT 2
K. < —+3 (4.16)
9q1/ 3
Substituting in (4.16) the former reference figure of 7dB for the required SIR gives:
R2wr 2
K <—/——+=> 4.1
=745 13 (4.17)

The estimation produced by this inequality is about five times greater in comparison
with that of (4.13), the time—frequency resource being assumed the same. This shows
that in cellular systems asynchronous CDMA is significantly more promising than the
traditional orthogonal multiple access schemes FDMA and TDMA.

Example 4.6.1. Suppose FDMA is used to provide multiple access within the bandwidth of
5MHz typical of 3G systems. With the transmission rate of encoded speech 19.2kbps and
BPSK, up to K, = W;/7R = 37 users per cell may be potentially accommodated. At the same
time, the asynchronous CDMA alternative, as follows from (4.17), is significantly better,
allowing upto K, = 32W/45R + 2/3 ~ 185 users to be served by a single cell site.

Estimations of the sort of (4.16) and (4.17) may seem excessively optimistic, since they
ignore the thermal noise component. A practical situation to which they are more
applicable implies that the power P transmitted by every mobile is so great that overall
MAI dominates the AWGN noise. On the other hand, a designer may be interested in
employing as low transmitted power as possible, e.g. for reasons of battery lifetime or
electromagnetic compatibility. Returning to (4.15), adding AWGN spectrum density to
the denominator and allowing again for the voice activity factor, it is easy to show that
when a ‘pure’ (i.e. not covering MAI) power SNR is ¢> and SIR ¢7 covering MAI plus
noise is required, (4.16) changes to:

R2WT AN
K. < 1-2£) 4= 4.18
= 9q; < )+3 (418)

If, for example, an overall MAI power should be of the same level as noise power within
the signal bandwidth then ¢> = 2¢? and:

16wT 2

= 4.19
9% 3 (1)
that is, about half of that calculated from the floor SIR (see (4.16)). For the required
SIR specified as before (7 dB):

K. <

lewr 2

K. <——— 4.2
¢S5 13 (4.20)
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Although with signal power reduction the number of users per cell dropped by two
times, it nevertheless remained more than twofold greater than in FDMA or TDMA.

One more merit of asynchronous CDMA is its favourable blocking character. In all
real multiuser systems physical channels (frequency sub-bands in FDMA, time slots in
TDMA, code signatures in CDMA) are not assigned to the customers once and for all.
Instead, the network itself controls the bank of traffic channels and grants one of them
to a user only when he requests access to the network. Of course, some system resource in
this case should be reserved to arrange the request channel. In FDMA or TDMA systems
the number of physical channels is fixed and from time to time blocking may happen,
i.e. the situation where the network rejects a user’s request since all the channels are busy.
A figure of about 2% is often assumed as tolerable probability of blocking and the
number of channels should meet this requirement. Sometimes the pattern of distribution
of subscribers over the network coverage area may change so seriously that at some cells
blocking becomes intolerably probable. Then the network operator may face the chal-
lenge of reconfiguring the network, which entails frequency replanning affecting all cells.

Scenarios typical of CDMA are critically different. First, if the number of users
already active equals the nominal one calculated by (4.16) or (4.20), and one
more request is received, it may be satisfied by assigning a signature which differs from
those already employed. This will lead to some (as a rule slight) reduction of SIR
and thereby quality of service for all active users. Therefore, instead of an outright
denial a smooth blocking happens. Second, when in the course of time traffic in some
area increases dramatically the operator may place an additional base station at the ‘hot
spot’ without frequency replanning or any other radical affecting of the other cell sites.

Based on the analysis of this chapter, the conclusion is justified that spread spectrum
appears quite a flexible and efficient aid in providing multiple access. In particular,
cellular systems are among those where the advantages of CDMA manifest themselves
most persuasively.

Problems

4.1. A digital FDMA data transmission system should serve at least 100 users. Estimate
the minimal total bandwidth occupied by the system if the necessary data rate per
user is 20kbps and BPSK is used as the data modulation mode. How will the
bandwidth change if QPSK replaces BPSK? Answer the same questions if TDMA
is preferred to FDMA.

4.2. An FDMA QPSK system is intended for digital data exchange between aircrafts
and operates at frequencies around 3 GHz. The maximal vehicle velocity is 1800 km/h,
master clock driftis 2 x 10~7 and the guard interval due to non-rectangular filtering
is 1 kHz. Find the maximal number of users accommodated within the bandwidth
2.32 MHz if the necessary data rate per one user is 20 kbps.

4.3. A digital TDMA multiuser system should serve at least 100 users. The modulation
mode is 8-PSK. Estimate the minimum bandwidth occupied by the system if the
necessary transmission rate per user is 20 kbps.

4.4. A single uplink frequency subchannel of a TDMA BPSK digital cellular system

is allowed to occupy bandwidth of 200 kHz. The time interval between consecutive
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4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

data bursts of every user should not be longer than Sms, the necessary data
transmission rate per user is around 20kbps and the maximal cell radius is
30 km. Find the maximal number of TDMA channels per frequency subchannel.
In a synchronous CDMA system 128 physical channels should be arranged. The
data transmission mode is 8-PSK and the necessary rate per user is 20 kbps.
Estimate the minimum bandwidth demanded.

A synchronous CDMA system has 50 physical channels operating in 16-PSK
mode with a data rate of 20kbps per user. The total bandwidth occupied is
500 kHz. What is the processing gain of the system? Can the system be free of
MAI? What if the bandwidth were four times smaller?

There are two users within one cell of a cellular CDMA telephone system located
at distances 500 m and 5km from the base station. A more distant mobile emits
power of 100 mW. Find the power emitted by the closer mobile under the assump-
tion of perfect power control.

In the uplink of an IS-95 cellular telephone asynchronous CDMA is used. Data
are transmitted at a rate of 28.8 kbps by means of orthogonal signals comprising
6-bit data blocks. The signal bandwidth can be assumed as 1.25 MHz. What is the
number of users per cell if the minimum required SIR is 7 dB, voice activity factor
is 3/8, external MAI adds 50% to internal interference and thermal noise is
neglected. What will change if the SNR for thermal noise only is 9 dB?

Estimate the number of necessary cell sites under the conditions of Problem 4.8
(AWGN is not neglected) to service an area with 50 000 subscribers if the prob-
ability of the active state of a subscriber is 0.02. Compare the result with that for
an FDMA system.

How will the potential number of users change if under the conditions of Problem
4.8 orthogonal 6-bit signalling is replaced by BPSK, the bandwidth and data rate
remaining the same?

Based on the Ocumura—Hata model, prove that asynchronous CDMA is inop-
erative in a typical macrocell cellular system uplink without an effective power
control. Neglect the thermal noise component.

There is synchronous downlink in a cellular CDMA system. Within one cell the
maximal number of orthogonal signatures is used. If no time—frequency resource
distribution between cells is involved, how can the effect of the surrounding base
stations on the mobile receivers of the given cell be estimated? What would you
recommend as a general approach to choosing signatures in such a system?

Matlab-based problems

4.13.

Write a program illustrating the principle of FDMA. Example plots are shown in
Figure 4.6.

(a) Form the K x 100 matrix of K subcarriers (K = 2—10 is recommended). Take
frequencies so that for each subcarrier the exact integer number of periods per
100 points is one greater than for the previous one. For the first one 4-6
periods are advised.
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4.14.

4.15.

1st user signal
Group signal

Kth user signal
1st user demod

Group signal
Kth user demod

Figure 4.6 Simulation of the principle of FDMA

(b) Take 2-3 random information bits for every subcarrier and perform BPSK
modulation of all subcarriers. Plot the modulated signals for two selected
users.

(c) Sum all modulated signals to come to a group signal and plot that.

(d) Demodulate each transmitted bit for every user, multiplying the group signal
by a relevant subcarrier and then integrating over the bit duration. Plot
selected demodulator outputs. Take decisions on the received bits for all users
and compare them with the transmitted ones.

(e) Run the program, changing the number of users, and interpret the results.

Use the program from Problem 4.13 to demonstrate the influence of inter-channel
interference accompanying frequency drifts in an FDMA scheme. Enter a fre-
quency shift of +0.25 in the first subchannel and fix identical bit patterns in all
subchannels. Reducing the amplitude of the first signal, note the value under
which wrong decisions on the channel bits arise. Run the program, varying
frequency drift and channel amplitudes, and comment on the results.

Write a program confirming experimentally equation (4.10) for the floor SIR in
asynchronous CDMA.

(a) Set N =50—80 and form the K x N binary matrix (taking on values £1) of
independent random numbers.

(b) Use the rows of the matrix as the signatures of K users. Assume the first of
them is a useful one, the rest being interfering.
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(c) Sum all rows except the first to simulate MAI.

(d) Calculate output receive MAI as the inner product of the input MAI (item (c))
and the first signature.

(e) Repeat items (a)—(d) 5000 times, calculate the variance of MAI and SIR, and
compare them with the one evaluated by (4.10). What value of W should be
used in (4.10) to make the experimental results fit the theoretical prediction?
Give your explanation as to why WT = N appears inappropriate.

(f) Plot a histogram of MAI over all 5000 experiments and verify its closeness to
the Gaussian PDF with an equal variance (Figure 4.7 presents example plots).

(g) Run the program for combinations of N, K and check the validity of (4.12).
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Figure 4.7 Histogram of MAI and its Gaussian approximation

4.16. Write a program illustrating the low contribution of outer mobiles to an overall

MALI in an asynchronous cellular CDMA. Advised steps:

(a) Set N =80—100 and number of users per cell K = 20-25.

(b) Using uniform random generator, form and plot internal MAI as the sum of
K — 1 random binary (consisting of elements +1) signatures of length N.

(¢) Form the 6K x 2 matrix of random polar coordinates D., 6 of outer mobiles
(see Figure 4.4) to simulate uniform distribution of mobiles throughout a cell.
Note that to realize this the angle should be uniformly distributed over [—, 7],
but the radius has to have linearly rising PDF. The latter is simulated by
generation of uniformly distributed random numbers and afterwards taking
their square roots.
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Figure 4.8 Random distribution of users over the surrounding cells

(d) Form the 6K dimensional vector of ratios of distances D, (from an outer
mobile to the BS serving it) and D, (to the BS serving internal mobiles):

D2 o D2
D, \/4D3 + D2+ 4D.D; cos 0

where cell radius D. may be set equal to 1.

(e) Form and plot the external MAI as sum of all outer signatures, each weighted
with an amplitude attenuation factor. The latter is calculated on the basis of
previous item with power attenuation exponent e = 3.8 (see (4.14)).

(f) Form and plot total MAI as the sum of the internal and external ones, and
estimate the increase of the total MAI versus the internal one.

(g) Produce a scatter plot demonstrating the random distribution of mobiles in
outer cells (Figure 4.8 shows an example).

(h) Run the program repeatedly for a range of N, K, compare the results with the
theoretical prediction and give your comments.
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Discrete spread spectrum signals

5.1 Spread spectrum modulation

Let us revisit the general model (2.37) of a bandpass signal:

s(t) = Re[S(r) exp(i2nfor)], S(1) = S(r) exp[j(1)]

It is quite comprehensible that the spreading of a signal spectrum is accomplished by
appropriate controlling of a signal complex envelope S(¢), i.e. modulation of its instant
amplitude S(¢) and instant initial phase ~(¢). As was observed in Chapter 1, ‘pure’
amplitude modulation cannot be an efficient tool for spectrum spreading, since it may
remarkably widen the bandwidth only at the cost of concentrating the signal energy
within short time intervals. As a matter of fact, this implies operating with short plain
signals. On the contrary, angle (phase or frequency) modulation is capable of unlimited
(at least in theory) widening of the spectrum with no effect on the distribution of the
signal energy in time, i.e. signal duration, due to which its role in spread spectrum
technology is fundamental. Amplitude modulation is just an auxiliary instrument, which
sometimes appears to be useful in combination with angle modulation.

Depending on the character of the modulation involved all spread spectrum signals
may be classified into continuous and discrete ones. For the first, the modulation law,
i.e. complex envelope S(7), is a continuous function of time, while the modulated
parameters (amplitude, frequency, initial phase) of the second are piecewise constant
and change by hops only at discrete time moments. The example of a continuous spread
spectrum signal will be discussed briefly in Section 6.2; however, the main attention will
be focused on discrete signals, owing to their predominant role in the majority of
modern and forward-looking commercial systems.

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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5.2 General model and categorization of discrete signals

Discrete signals considered in this book may be covered by the following description,
generalizing the one already presented in Section 2.7.3: a discrete signal is a sequence of
elementary pulses of a fixed form, recurring at some fixed time interval. The elementary
pulse is called a chip. The complex envelope Sy(7) defines its shape and internal angle
modulation, if any. The time interval A between consecutive chips typically, but not
compulsorily, equals or exceeds chip duration A.. Modulation of the whole signal
consists in manipulating the amplitudes, phases and, possibly, frequencies of individual
chips. Accordingly, formal representation of the complex envelope of a discrete signal is
given by the equation:

o0

S(1) = Z a;So(1 — iA) exp(j27F;t) (5.1)

i=—00

where, in addition to the designations explained, a; and F; are, respectively, complex
amplitude and frequency (in terms of shift against the fixed central frequency) of the ith

chip. It is obvious that the sequence {|a;|, i=...,—1,0,1,...} determines real ampli-
tudes of chips, 1i.e. their amplitude modulation. Similarly, sequences
{¢; = arga;,i=...,—1,0,1, ...} and {F,i=...,—1,0,1,...} define the laws of

modulation of chip phases and frequencies. Figure 5.1 may be helpful in understanding
some of the definitions above.

Suppose that in the model (5.1) real amplitudes |¢;| may take on non-zero values only
for0 <i< N-—1and |¢] =0fori<0andi> N.Putting it differently, the signal is a
burst of a finite number N of manipulated chips. Such a signal we will call pulse or
aperiodic. The duration of an aperiodic signal is 7 = (N — 1)A + A.. Another important
case is a signal for which the modulation law repeats itself with a period of N chips:
a; =apn,F;=Fyn,i= ..., —1,0,1, .... For natural reasons, this sort of discrete sig-
nal is called periodic. Its real-time period is T'= NA and any periodic signal is just a
repetition with period NA of an aperiodic one, the latter being a one-period segment of
the periodic signal. In both cases we will call parameter N the length of a code sequence
(see Section 2.7.3).

Within the described general model we distinguish between several categories of
discrete signals in accordance with a specific chip modulation mode.

ith chip

Figure 5.1 Example of a discrete signal
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1. If only the complex amplitudes of chips are manipulated, all frequencies remaining
the same (F; =0, i=0,1, ..., N — 1), the signal is called an amplitude-phase shift
keying (APSK) one. The conventional name of the sequence of chip complex ampli-
tudes {a;, i=0, ..., N — 1} is a code sequence or simply code.

2. If only the phases of chips in an APSK signal are manipulated, amplitudes being
unchanged (|¢;| =1, i=0,1, ..., N — 1), the signal is a PSK one. PSK signals are
typical of so-called direct sequence spread spectrum systems (see Section 7.1).

3. Within PSK signals further categorization is possible depending on the modulation
alphabet. When only binary complex amplitudes are involved (a; = +1, or equiva-
lently, |a;| =1,¢; € {0,7}, i=0,1, ..., N — 1), the signal is a BPSK one; with a
quaternary alphabet «; = =1, £/, or equivalently, |a;|=1,¢; € {0, 7, £ 7/2},
i=0,1,...,N — 1, the signal is QPSK etc.

4. If only the frequencies of chips are controlled, complex amplitudes remaining con-
stant, the signal is of FSK type. A code sequence of such a signal is just a sequence of
frequencies {F;,i =0,1,...,N — 1}. These signals are, in particular, employed in
frequency hopping systems (see Section 7.1).

5.3 Correlation functions of APSK signals

Correlation functions showing the likeness of time-shifted copies of signals are of critical
importance in problems of time measurement and resolution (see Sections 2.11-2.16).
The art of designing spread spectrum systems, as will be seen from the further discus-
sion, is in many aspects the ability to find signals with adequate correlation properties.
In this section we are deriving a general expression for the correlation functions of
APSK signals. From the definitions above, the complex envelope of an APSK signal has
the form:

S(1) = i 4;So(t — i) (5.2)

i=—00

Turn to the definition of normalized ACF (2.67), taking into account that for a periodic
signal the integrand will also be periodic, and hence, its time-averaging (integration)
may be accomplished over one period, normalization being made to the one-period
energy. Therefore, with an assumption A, < A mostly typical of applications,' we are
able to make use of the universal equation:

| —

T
plr) = /S(z)s'*(z—T) dr (5.3)
0

! The final results we will come to are valid regardless of whether or not this inequality is true. The assumption
only helps to eliminate some secondary details in the derivation below.
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for both aperiodic and periodic signals, where E = ||a||*Ep is complete energy for the

first and per-period energy for the second. Here Ej stands for chip energy and ||a|| is a

geometric length (Euclidean norm) of the code vector a = (ay, ay, ...,ay_1); in other

words, [a]*= SN, |ai|* is the energy of the N-element sequence {ag, a1, .. .,ay_1}.
Substituting (5.2) into (5.3) gives:

T
1 o0 (o)
:EZ Za,a/ (1—iN)S5(t — kA — 7)dr
i 0

k—foc i=0

T
== Z Zaak/ (t —iA)Sy(t — kA — 7) dt
0

where the last equality follows from vanishing the integral, whenever i is beyond the set
{0,1,...,N—1}.
Introducing the ACF of a single chip:

polr) = — / So(0)S(t — 7)dt (5.4)

leads to:
o) = z( S )p o
Ko \llall” %

Now change the summation index k to m = i — k, arriving at:

o]

pr) =Y p(m)pe(r — mA) (5.5)
m=—0oQ
where:
1 Nl
plm) =-—3> aa;, (5.6)
all” =
is the ACF of the code sequence {ay, @i, ...,ay_; } characterizing its resemblance to its

replica shifted by m positions.

Equation (5.5) has quite an eloquent implication. Comparing it with the model (5.2)
allows the observation that the ACF of an APSK signal is the APSK signal itself! The
chip of the latter is the ACF p.(7) of the original chip, while the code sequence is the
ACF (5.6) of the code sequence {ay, ay, . ..,ay—1 } of the original signal. Therefore, given
the chip, the ACF of the APSK signal is entirely determined by the ACF p(m) of the
code sequence (or code ACF), and designing APSK signals with good autocorrelation
properties means searching for sequences with good ACF. Note that, like any ACF, p(m)
at m = 0 equals 1 and is even: p(m) = p*(—m).
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In multiuser CDMA systems families of discrete signals are necessary with special
cross-correlation properties (see Section 4.5 and Chapter 7). Repeating accurately the
derivation above but this time for two different (kth and /th) APSK signals having
identical chips and lengths results in the following equation for their cross-correlation
function (CCF):

o0

pri(7) = Z pi(m) pe(T — mA) 5
m=—oo
where:
=
N R TPTITPT a ‘a*‘—n 5.8
Auam) = o ] g i .
is the CCF of the code sequences {axo,a1,-..,akN-1},{ar0. a1, ...;a;n—1} of

the two signals, which shows the resemblance of the first to an m-shifted replica of the
second. Certainly, CCF (5.7) is again the APSK signal whose code sequence is just the
CCF of the two original codes (code CCF). Designing families with the necessary cross-
correlation properties means searching for the families of sequences having appropriate
CCF. Equations (5.7) and (5.8) are most general, since the ACF of the kth signal is
Prk(T) and the same is true for the code sequences.

In what follows we will widely use the results obtained, sometimes omitting front
factors in (5.6) and (5.8), i.e. operating with non-normalized correlation functions of
code sequences:

R(m) = Z alal m> Ry (m) Zak lall m (5.9)

5.4 Calculating correlation functions of code sequences

Consider the code sequence {ao, a1, ...,ay—1}. If it is used to generate a pulse signal, in
the general model (5.2) a; = 0 for negative i and i > N, so that according to (5.6)
aperiodic or pulse ACF is calculated as:

” HQE : a;di_p, M

pa(m) = 1 N—=l+m (510)

W aa;_,,,m<0

The second row here is somewhat redundant since any ACF features evenness, and in
particular, p,(—m) = p}(m). As is seen, ignoring the normalizing factor, aperiodic ACF
is an inner product of the vector a = (ag, ay, - .., ay—1) and its m-position non-cyclically
shifted version. The latter is a shifted to the right (m > 0) or to the left (m < 0) and only
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the overlapping components of a and its shifted replica enter the sum in (5.10), all the
rest are regarded as being forced to zero. For example, to calculate p,(1) we first write,
one above the other, the initial sequence and its copy conjugated and shifted to the right
by one position, then compute all of their component-wise products and sum all the
products:

ay a1 dy dz ... d4dn-—1
* * * *
Ay a;p 4y ... dy_o Pal H3||2 E , a;d;_
Let us assume now that the signal is periodic, i.e. ¢; .y = @;,i = ...,—1,0,1, .... Then

(5.6) defines the periodic ACF p,(m), the sum in which always contains N summands,
since a_; = ay_1,d_» = dy_», €tc:

Zalal . (5.11)

In this case the inner product is computed for the original code sequence and its cyclically
shifted copy, where under m > 0 m left ‘empty’ positions are filled with symbols pushed
out rightward. For instance, a scheme of calculating p,(1) looks like this:

a4

ap a d a3 ... dn_—]

* *

* _ *
dy_1 Gy 4ap a4 ... dy Pp(l)*72§ a;a;_y

Since p,(m) is calculated under the assumption of periodicity of a code sequence, it is

periodic itself with period N, i.e. p,(m) = py(m +N), m = ..., —1,0,1,..., which stems
directly from (5.11) and, in its turn, reformulates the evenness property as:
pp(=m) = pp(N = m) = p(m — N) (5.12)

This equation shows that p,(m) is entirely characterized by its values at only shifts

N
=1,2,...,|=
m )& v\‘sz

where || symbolizes rounding towards zero. Another important property of the peri-
odic ACF follows from (5.11) after splitting its sum into two:

N— m—1

pl’m H| Zztm H Hzlem? =

i=m
The first term here is aperiodic ACF p,(m) (see (5.10)), while the second equals
pa(m — N), which is again verified immediately from (5.10) by calculating p,(m — N)
according to its second row. This produces the equality associating the periodic and
aperiodic ACF:

pﬁ(m):p(l(m)+pa(n/l*N)7m:0717"'7N (513)
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Equation (5.13) plays quite a crucial role in the synthesis of pulse signals with good
autocorrelation properties (see Section 6.10).

Example 5.4.1. Table 5.1 illustrates the technique of computing aperiodic and periodic ACF by
the example of a binary sequence of length N = 8{+ + + — — + ——}. In the table the binary

Table 5.1 Computation of ACF of the sequence of length 8

m ap | ap | ay | a3 | a4 | as | ag | az R, (m) R, (m)
0 + + + - - + - - +8 +8
1 - + - - + - +1 0
2 - - + + + - - + -2 -4
3 + - - + + + - - +1 0
4 - + - - + + + - 0 0
5 - - + - - + + + -1 0
6 = - - + - - + + -2 -4
7 + A - - + - - + -1 0

code symbols +1 and —1 are designated by just ‘+’ and ‘', respectively, as is usually done.
Non-normalized ACF is presented and the shading marks the symbols that are ignored in the
calculation of the aperiodic ACF. The results after normalization are also used in Figure 5.2,
where the autocorrelation functions of the APSK signal with a rectangular chip of duration
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Figure 5.2 Autocorrelation functions of the binary signal of length 8
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A; = A and the considered code sequence are built. The solid, dashed and dotted-dashed lines
present the periodic ACF p,(7) and shifted copies pa(7), pa(r — T) of the aperiodic ACF,
respectively. Certainly, the plots confirm the validity of (5.12) and (5.13).

When the CCF of two sequences of the same length is calculated we again may
discriminate between the aperiodic CCF p, 1;(m) and the periodic one p, (1) found as:

N-1
1 *
Tl 22 il 72 0

Pasi(m) = N (5.14)
N+m—1

e 2o il M <0
<

and:

1 N-1 .
pﬁ;kl(m) ERRTPSTIIN Z Qe i@ i—m (5.15)

llaclll|a]] =
Equation (5.13) still stands for CCF:
Ppki(M) = paji(m) + paji(m — N) (5.16)

but as for the evenness or unity value at m = 0, those, certainly, are no longer inherent
features of an arbitrary CCF as they were of any ACF.

5.5 Correlation functions of FSK signals

Let us perform the same work as in the two previous sections but now in application to
FSK signals. Following the definition of Section 5.2, a complex envelope of an FSK
signal assumes the form:

S(1) = i @i So(t — iA) exp(j2nF;t) (5.17)

i=—00

where in the case of a periodic signal all a; equal one, while for a pulse signal of length N
a;=1,0<i< N and @; = 0 beyond the range 0 < i < N.

Regardless of the periodicity or finiteness of the signal, we again, with the same
reasoning as before, may exploit a universal expression of ACF:

T
] 1 e
o) = / S()$* (1 — 7) dt
0
1 = r
(j2mF, (t —iA)S;(t — kA — 2m(F; — Fy)t]dt
NEOIOkZmaakexp]wkT O/Sot iN) S (1 T) exp[j2m( i)t dt
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where use is made of the fact that all chips with non-zero amplitudes now have equal
energies Ey, i.c. |al|*’= N and E = NE,.

It is typical of FSK modulation to use a uniform frequency alphabet so that
F; € {0, £F, £2F, ...}, where the frequency step F is no smaller than the chip band-
width. Thus, the spectra of two chips having frequencies F; and F; do not overlap and
the chips are orthogonal independently of their time mismatch (see Section 4.4), when-
ever F; # Fy. Allowing for this fact, we arrive at:

) 1 oo N-1
o(r) = Nk;:oc ; ajay exp(J2nFT)6(Fi — Fy)pe[r — (i — k)A]
1 [eS) N—
Nm; Z{; aiQi—py eXp(J2FT)0(Fi — Fi_py ) pe(T — 01’ A) (5.18)

where p.( - ) is, as before, chip ACF and:

O (e

Unlike APSK signals, ACF (5.18) in the general case cannot be further simplified to a
form similar to (5.5). It is common practise to analyse the behaviour of the ACF of FSK
signals primarily at the delays, which are multiples of the chip duration: 7 = mA, where
m is integer. Assuming that the integer number of periods / of each frequency fits in
the chip duration (FA =/) and taking into account that p.(0) = 1, p.(7) = 0, || > A,
substitution of 7=mA into (5.18) leaves only one non-zero addend of the sum
in m corresponding to m’ = m, so that:

IN

pmA) =<3 aiinb(Fi = Fip) (5.19)
i=0

When the signal is finite and m > 0, all summands possessing indexes beyond the range
m,m+1,..., N—1 disappear, and the aperiodic ACF of the FSK signal
p(mA) = p,(m) assumes the form:

| V=
—26 (Fi = Fi_m), m >0, p,(—m) = p,(m) (5.20)
i=m

2

where complex conjugation in the second equation (expressing evenness) is needless,
since p(mA) is always real-valued.

In the case of signal periodicity no zero products a;a; ,, enter the sum of (5.19) and the
periodic ACF of the signal in question p(mA) = p,(m) looks as follows:

NZ §(F; — Fi_p) (5.21)

i=0
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The sums in (5.20) and (5.21) just accumulate the number of coincident frequencies in
the FSK signal and its replica time-shifted by m chip positions. Therefore, to compute
ACF of an FSK signal at the point mA, it is quite enough to count the number of pairs
{F;, Fi_,} with equal F; and F;_,,, where i runs over the ranges {m,m+1,...,N — 1}
(aperiodic ACF, m > 0) or {0,1,..., N — 1} (periodic ACF). Clearly, equation (5.13),
linking together periodic and aperiodic ACF, remains valid for FSK signals.

One widely used way to represent an FSK signal is as an M x N array where the
horizontal and vertical directions are assigned to time and frequency, respectively, and
M is the size of the frequency alphabet (i.e. the number of frequencies used in modula-
tion). In the ith vertical column of this array only a single entry is labelled (e.g. by a
point or shading), which corresponds to a frequency of an ith chip. Then to calculate
aperiodic ACF at any specific m we just sum the number of labelled pairs along all rows
having distance m and normalize the result if necessary. If periodic ACF is of interest,
the sums above obtained for m and N — m should be summed together.

Example 5.5.1. Figure 5.3 shows the modulation law of an FSK signal of length N = 8 with
7
N = 8, M = 5. Its non-normalized aperiodic ACF R,(m) = Y 6(F; — Fi_m) has values 8,1, 1, 0,
i=m

Figure 5.3 FSK signal with N =8, M =5

1, 0, 0, 0 corresponding to m=0,1,...,7, since there is one labelled pair along one line at
distance 1, one such pair at distance 2, etc. Directly from (5.13), the values of non-normalized
periodic ACF may be found as 8,1, 1,0,2,0, 1, 1.

Generalization of results (5.19) and (5.20) onto CCF can be done without trouble
merely by adjusting the designations:

1 N=1
N ,Z 6(Fk,i - F/,ifm)7 m >0
Paki(m) = (5.22)
1 N+m—1
N Z 6(Fk<i - Fl,i—m)7 m <0
i=0
1 N—1
p[?,kl( ) = N 6(Fk,i - Flﬁi—m) (523)
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where {Fy.;,i=0,1,...,N — 1} is the frequency code sequence of the kth signal. It is
obvious that computation of CCF is again just tallying up a number of coincident
frequencies in the pair of signals time-shifted by m chip positions.

5.6 Processing gain of discrete signals

Let us revisit the general model (5.1) to discuss the issue of the processing gain of a
discrete signal. Suppose that all F; belong to the frequency alphabet of size M, in which
consecutive frequencies are separated by a chip bandwidth providing orthogonality of
chips with different frequencies. Then at each of M available frequencies we have a
signal subspace whose dimension is V, since we are fully free in selection of the amplitude-
phase code sequence, i.e. N-dimensional vector a = (ag, ay, ...,ay_1). Orthogonality of
these subspaces means that the dimension of the whole signal space covering all M
frequencies is M N. In Section 2.5 it was shown that the dimension of bandpass signal space
coincides with the total time—frequency resource allocated to signals. Being interested only
in spread spectrum signals, each occupying the whole available resource, we may predict
that the time—frequency product of a discrete signal, i.e. processing gain, equals MN.

Let us confirm this statement by a straightforward computation, setting A, = A.
Estimating chip bandwidth as 1/A and taking into account that available bandwidth
and time resources are then W = M /A and T = NA, we arrive at the result WT = MN.
Obviously, for APSK signals M = 1, and processing gain W7T = N.

Problems

S.1. A discrete signal of length N = 5 has complex amplitudes ¢y = 1 +j, a; = —1 4+,
a=14+j,a3=—-1—j, a4 =1—j and frequencies F; =0, i=0,1,2,3,4. Evalu-
ate the phases and amplitudes of its chips and classify the signal by its modulation
mode.

5.2. A discrete signal has amplitude-phase and frequency codes a; = exp [jmi(i + 1)/2],
F;=0,i=...,—1,0,1,.... Calculate the amplitudes and phases of its chips. Clas-
sify the signal by its modulation mode. Is this signal periodic? If so, specify its
period.

5.3. Prove the evenness of the periodic and aperiodic autocorrelation functions of code
sequences of APSK signals.

5.4. An APSK signal is built of rectangular chips with A, = A and has the code
sequence set by the vectora = (1, 1,0, 1,0,0, —1). Calculate and sketch its aperiodic
and periodic ACF. Do the same for the case A, = A/2.

5.5. What happens to the periodic and aperiodic ACF of an APSK signal under the
following transformations of a code sequence:

(a) Cyclic shift of elements?

(b) Changing the signs of all elements?

(c) Changing the signs of only the elements with even numbers?
(d) Multiplying all elements by the same constant?

(e) Mirror-like rearranging (i.e. reading from right to left)?
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5.6.

5.7.

5.8.

Is the combination |R,(1)| = 3,|R,(1)| = 1 possible for a PSK code? What about
the combinations R,(1) = —2.1,R,(1) = 0.8 — 0.6j; R,(1) =0.6+ 0.8/, R,(1) =
1.1 4j? What is the possible value of |R,(1) — R,(1)| for a PSK code?

The spaces between frequencies of an FSK signal are multiples of F = 1/A. Prove
that time-aligned rectangular chips with different frequencies are orthogonal.
An FSK signal of length N involves M < N frequencies. Chips of different
frequencies are orthogonal. Is it possible that ACF is zero at all non-zero time
shifts 7 = mA?

Matlab-based problems

5.9.

s(1), QPSK s(1), BPSK s(1), APSK

s(1), FSK

Write a program displaying APSK, BPSK, QPSK and FSK discrete signals. Take
N = 6—10, carrier frequency fy = (10—20)/A, chip duration A, = A and frequency
step F = 1/A. Run the program for various modulation modes and chip shapes
(e.g. rectangular and half-wave sine), adjust the code sequences to provide satis-
factory visualization and comment on the waveforms observed. Examples are
given in Figure 5.4. Use the program also to demonstrate the finiteness or
periodicity of signals.

Figure 5.4 Example waveforms of discrete signals

5.10. Write a program demonstrating that the ACF of an APSK signal is the APSK

signal itself, its chip being the ACF of the original signal and its code sequence
being the ACF of the initial code sequence. Recommended steps:
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(a) Form a plain chip (e.g. rectangular or half-wave sine).

(b) Form a real (e.g. binary, ternary etc.) code sequence containing 7-10 elements.

(¢) Form and plot the signal with this chip and modulation law.

(d) Calculate and plot its ACF directly using an appropriate Matlab command.

(e) Calculate and plot the ACF of the initial signal chip.

(f) Calculate and plot the initial code ACF.

(g) Verify that the ACF of item (d) reproduces an APSK signal with the chip
obtained in item (e) and the code obtained in item (f).

(h) Run the program, varying the chip shape and code of the initial signal, and
give your comments. Example plots are shown in Figure 5.5.

-8 -6 -4 -2 0 2 4 6 8
T/IA

| S R——— S ——————— Se——————— ———— ]

R R R . e o]

L e e e e S .

-8 -6 -4 -2 0 2 4 6 8

Figure 5.5 Aperiodic ACF of the ternary signal of length N =8

5.11. Write a program verifying the association between periodic and aperiodic ACF of
discrete signals (see Figure 5.2). Recommended steps:

(a) Specify some real (more convenient to display versus a complex one) code
sequence of length N = 7—15.

(b) Calculate its periodic ACF directly from definition.

(c) Plot one period of it for the case when the chip is rectangular.

(d) Calculate the aperiodic ACF.

(e) Plot it and its N-shifted copy.

(f) Run the program for various codes and check the validity of (5.13).



148 Spread Spectrum and CDMA

% 5 : T T T T T T
8 4 —--——»»»—:r ——————————————————————————————————————————————————————————— —
? 3 R REEEEEEl EEEEE e R e E el SEhEi —
f=1 '
S 2 boonosgeonoees R ER [NGRROEE [ECLEDED" SEECEED EEECED =
ST T O IR ISR RN IO RN I _
> 1 |

0 1 2 3 4 5 6 7 8

Position number

T T S ——— — R S—|

O AR T

s(1)
=)

Figure 5.6 ACF of FSK signal of length N = 8 (see Example 5.5.1)

5.12. Write and run a program calculating precisely a real envelope of the ACF of an
FSK signal. Recommended steps:

(a) Form a rectangular chip envelope.

(b) Specify a frequency code of length N = 7—10 and frequency alphabet size
M=5...N—1;

(¢) Form the complex envelope of an FSK signal with a specified frequency code,
setting the frequency step F = 1/A.

(d) Calculate and plot the real envelope of the ACF of the signal obtained.

(e) Compare the obtained values of ACF at the points 7 = mA to the theoretically
predicted ones.

(f) Run the program, varying the frequency code.

(g) Pay attention to the situations where the ACF level between the points
7 = mA is higher than at these points (see Figure 5.6). How would you explain
this phenomenon?
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Spread spectrum signals for time
measurement, synchronization
and time-resolution

6.1 Demands on ACF: revisited

Let us return to the problems of estimating time delay and time-resolution studied in
Sections 2.12 and 2.15, and recollect the demands imposed on a signal if high measuring
accuracy and resolution capability are required. The principal condition to be met in
both these problems is a response of the matched filter to a signal that is highly
concentrated in time, or, equivalently, a ‘sharp’ signal ACF corresponding in the
frequency domain to a wide spectrum. The attractiveness of spread spectrum as opposed
to just shortening the signal is that with high processing gain WT > 1 it is possible to
put into a signal the energy dictated by the necessary SNR controlling only the duration
of T rather than peak power, which typically has a strict upper limit. Then involvement
of an appropriate angle modulation allows widening the signal bandwidth to the extent
which provides time compression of the signal by the matched filter, so that the duration
of the filter response (correlation spread 7. = 1/W) appears to be many (about WT)
times smaller than the duration 7 of the signal itself.

Let us specify what sort of ACF we may treat as sharp or ‘good’ concerning the
reception problems in question. Actually, the ACF (see definitions (2.66) and (2.67))
of any physically realizable signal cannot equal strict zero at all 7 beyond the range
[—7e, 7], if the correlation spread 7, is smaller than the signal duration 7. Thus, along

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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|2 [ sidetobes

Figure 6.1 Central peak and sidelobes of ACF

1y (1)

Figure 6.2 ACEF sidelobes and abnormal errors

with the so-called mainlobe or central peak within the interval [—7., 7], the ACF has
also sidelobes outside this range (see Figure 6.1). The effect of sidelobes is pre-
dominantly obstructive in both delay measuring and time-resolution. Indeed, to
measure in an optimal (ML) manner the signal delay one should fix the time position
of the maximum of the matched filter output envelope r;(¢) (Section 2.12), and the
ACF envelope is exactly the matched filter-detector response to a noiseless signal. In a
real situation of noisy observation there is always some risk that somewhere beyond
the ‘body’ of the ACF central peak a false maximum appears higher than a true
(i.e. located within the body) one, as the dashed line in Figure 6.2 shows. In this case,
an abnormal estimation error occurs, which is a deviation ¢ of the estimate 7 from a
genuine value 7 exceeding 7. It is obvious that confusion of the mainlobe with a false
peak emerging in the vicinity of a high sidelobe is more probable than with the false
peak located at the ‘empty place’. Actually, the closer the levels of mainlobe and
sidelobe, the ‘easier’ it is for the Gaussian noise to raise the second over the first.

To illustrate a harmful effect of sidelobes on time-resolution consider the superposi-
tion of two replicas of a bandpass signal, which are time-shifted and scaled as shown in
Figure 6.3a. After processing by a matched filter the mainlobe of the weaker replica
proves to be fully hidden under the sidelobe of the stronger replica (Figure 6.3b). In
these circumstances the observer cannot confidently extract necessary information from
both signal copies, or even tell how many copies are received. A situation of this sort is a
typical case of non-resolved signals, despite the mainlobe of the ACF being much
shorter than the signal duration.

We may now summarize in the most general terms the requirements placed on spread
spectrum signals by delay estimation and time-resolution problems: the ACF of the
signal should have a sharp enough central peak and as low as possible level of sidelobes. In
the remainder of this chapter we study ways and instruments of approaching this
fundamental objective.
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Figure 6.3 Non-resolution due to ACF sidelobes

6.2 Signals with continuous frequency modulation

Historically, among the first discovered signals possessing the matched filter time-
compression feature was the linear frequency modulated (LFM) pulse. As the name
tells us, the carrier frequency of this signal changes linearly throughout its duration.
Consider a bandpass pulse whose instantaneous frequency f{(¢) grows with time accord-
ing to the equation:

f(1) f+

where W, is the frequency deviation, i.e. the entire range of frequency variation, and f
is, as usual, the central frequency. A complete phase ®(¢) of a signal is the integral of a
momentary frequency, therefore for an LFM pulse the phase obeys a square law:

2
<t
2

—271'// )dt = 2xfot +

Assuming a rectangular real envelope, the complex envelope of the LFM signal takes

the form:
W4t T
<=
xp( T ),II_2

T
0,lt]| >=
>3

S(1) =
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Figure 6.4 Approximation of the spectrum and ACF of an LFM pulse

Substituting this equation into the definition of ACF (2.66), the latter can be calculated
formally without any special difficulties. Less formal and more physically transparent
logic, however, allows faster achievement of the result. It is well known [1] that when
the modulation index 0= W,T is sufficiently large (8 > 1), the spectrum of a fre-
quency-modulated signal contains components of all momentary frequencies, the shape
of the spectrum approaching the signal real envelope. Thus, in our case, the spectrum
spans the range [fo — W4/2,fo + W4/2] and has a form close to rectangular (Figure
6.4a). Now, ACF (2.66) may be found from the inverse Fourier transform, as was done
in Section 2.12.2. Since the energy spectrum is again rectangular, its inverse Fourier
transform is the function of view Siix, so that the normalized ACF of the LFM signal:

__sin(nWar)

pr) ~ (6.1)

Wt

which is shown in Figure 6.4b. To compare this result with the exact one, the reader may
turn to Problem 6.41.

As is seen, the complete (i.e. measured between zeros closest to the origin) duration of
the ACF mainlobe equals 27. = 2/W,. As a matter of convention, the duration of the
mainlobe on some non-zero level may be set equal to 7. = 1/ Wy, so that a matched filter
time-compresses the LFM signal T/7, = W,;T ~ WT times.

A substantial deficiency of the LFM signal is a high level of ACF sidelobes. The one
nearest to the origin has intensity 2/3w(—13.5dB) versus the mainlobe independently of
the processing gain WT, i.c. its level cannot be reduced by increasing deviation W,. To
lower the sidelobes, smoothing of the signal envelope is an effective method (Problem
6.41) as well as weighting by a special window or mismatched processing in the receiver.
In all of these methods, gain in the sidelobes is obtained in exchange for widening of the
mainlobe or/and loss in output SNR.

Example 6.2.1. Take a rectangular LFM pulse with deviation W, = 20/T. Using the program of
Problem 2.55 produces waveforms of the signal itself and the matched filter response given
in Figure 6.5. Compare the time-compression ratio and level of the first sidelobe to what is
expected theoretically.
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Figure 6.5 Time compression of a rectangular LFM pulse (W, = 20)

The other shortcoming of the LFM signal is its ridge-like ambiguity function py(7, F).
From the study of Sections 2.14 and 2.15 we may deduce that for measuring simultan-
eously time-delay and frequency, as well as for time—frequency resolution, the best sort
of ambiguity function is a needle-like one, having one central peak at the origin and
falling sharply in all directions of the time—frequency plane. As is seen from Figure 6.6,
where plots of the ambiguity function (a) and the ambiguity diagram (b) for an LFM

-10

(a)

-1.0 -0

5

0.0
TIT

(b)

0.5

1.0

Figure 6.6 Ambiguity function (a) and its horizontal section (b) for an LFM signal (WT = 10)



154 Spread Spectrum and CDMA

signal are given, the latter is not an efficient instrument to solve the problems under
discussion. When pairs 7, F fall into the ellipse of Figure 6.6b, the accuracy of estimating
these parameters becomes very poor, since signal replicas with all such pairs are strongly
correlated, i.e. hardly distinguishable. The same may be said about the resolution of
such time—frequency shifted signal copies: their high similarity makes their separation
very problematic.

Several ways of improving the ambiguity function of frequency modulated signals are
known; for example, employing symmetrical (V-type) linear modulation (Problem 6.42).

Continuous LFM signals and their modifications have been very popular up to now
in numerous spread spectrum radar and sonar systems. However, in modern commer-
cial communication systems or mass long-range navigation they do not find wide
application, making room for discrete signals. One of the reasons for such a preference,
in addition to what has already been mentioned, is better compatibility of discrete
signals with up-to-date digital technology, micro circuitry and the software-based
philosophy of radio systems.

6.3 Criterion of good aperiodic ACF of APSK signals

Let us return to equation (5.5) and recollect that the ACF p(7) of an APSK signal is
itself built as an APSK signal. Its chip is just the ACF p.(7) of an original chip, while its
code sequence is the ACF p(m) of the original code ao, ay, . .., ay—1. Such a construction
makes it evident that the profile of the complete ACF, given the chip, is entirely defined
by the code ACF p(m). In particular, if the chip duration does not exceed the chip
repetition period (A, < A), the ‘height’ |p(mA)| of any sidelobe at point 7 = mA just
repeats the magnitude |p(m)| of the code ACF at the shift m. It follows from what was
stated in Section 6.1 that minimization of the code ACF sidelobe level is the highest
priority in signal design, whenever time measurement or time-resolution is among the
objectives of a system. Certainly, it would be excellent to have all sidelobes equalling
zero, but this is absolutely impossible for finite or aperiodic APSK signals. Indeed,
consider some signal of finite length N, which implies that ay # 0 and ay_; # 0, other-
wise the length is smaller than N. Then the rightmost sidelobe of the normalized
aperiodic code ACF (5.10) of the signal:

apay_
pu(N - 1) = T|al|\|721 7& 0 (62)

This immediately leads to the minimax criterion of signal design, which requires achiev-
ing as small a magnitude of the maximal sidelobe of the aperiodic code ACF as possible.
Formally we put this problem as follows:

Pamax = IB%KHPH(M)H = min (63)

In the light of the criterion (6.3) we prefer code sequences with the lowest maximal
sidelobe; however, this requirement is always accompanied by a limitation on the
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modulation mode or, more specifically, on the alphabet to which symbols of the code
sequence belong. This constraint reflects technological aspects concerning the complex-
ity of signal forming and processing, and, as will be seen soon, may appear very binding.
We summarize our demands towards the best signal as the following optimization task:
on the set of all possible sequences of length N with symbols taken from a pre-assigned
alphabet find the sequence(s) with minimum magnitude of maximal sidelobe of the
aperiodic ACF.

6.4 Optimization of aperiodic PSK signals

The optimization task formulated above, like many other discrete optimization prob-
lems, does not have any general analytical solution, and exhaustive search is a typical
procedure of its handling. Let us limit ourselves to PSK signals, which are usually
recognized as most attractive. To explain the reasons for this, just recall that in the
problems of time measurement and time-resolution the main advantage of spread
spectrum consists in the availability of spreading signal energy over a large time interval,
thereby reducing peak power. PSK signals free of amplitude modulation present an
extreme version of such spreading, making the signal peak-factor v (the ratio between
peak and average powers) equal to one.

For any PSK signal |¢;| = 1,i =0,1,..., N — 1, so that the product |@yay_1| = 1, and
the rightmost aperiodic ACF sidelobe (6.2) |p,(N — 1)] = 1/N. Therefore, the maximal
sidelobe of a PSK signal is bordered from below as:

1

a,max Z AT 4
Pa, N (6.4)

Naturally, PSK signals attaining this bound would be optimal. They are called Barker
codes after the specialist who was a pioneer in their search. Actually, Barker managed to
find optimal binary codes lying on the border (6.4). Traditionally, binary sequences of
symbols 1 are considered most attractive, being especially well fitted to digital circuitry
and promising the least complexity of generating and processing. Table 6.1 lists all

Table 6.1 Binary Barker codes

N Code

2+ =

3+ 4+ -

4+ o+ - 4+

5+ 4+ 4+ - +

7+ 4+ o+ -+ -

1+ - + 4+ - + 4+ + - - -
B+ + 4+ 4+ + - - + + - 4+ - +
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binary Barker codes. Some of the codes are not unique in the sense that there are other
sequences of the same length meeting the lower bound in (6.4).

Example 6.4.1. Table 6.2 illustrates the calculation of the aperiodic and periodic ACF of the
Barker code of length N = 7. The structure of the table is identical to that of Table 5.1. As can
be seen, not only the aperiodic but also the periodic normalized ACF has maximal sidelobe
equal to 1/N.

Table 6.2 Computation of ACF of the binary Barker code of length 7

m ay a a, as ay as ag R, (m) Rp(m)
0 + + + - - + - +7 +7
1 - + + + - - + 0 -1
2 + - + + + - - -1 -1
3 - + - + + + - 0 -1
4 - - + - + + + -1 -1
5 - - + - + -0 -1
6 + - - + - -1 -1

Let us discuss briefly the matched filtering of a Barker signal. The best way of doing
so 1s again an example.

Example 6.4.2. Figure 6.7 shows the structure of the matched filter for the Barker signal of
length N = 7. The first unit is a tapped delay line, time separation between taps being equal to
chip period A. The tap outputs are input to the adder with weights, which are taken in reverse
order to the code symbols. The second part of the structure is a matched filter for a single chip.
To make sure that the whole scheme is the necessary matched filter, it is enough to test it by
applying in one’s mind the delta-pulse to its input. The response is a mirror image of the signal,
which is exactly what should be the reaction of a matched filter.

Figure 6.8, where the waveforms are numbered correspondingly to the points of Figure 6.7,
demonstrates all the details of matched filtering of the Barker baseband signal compounded of
rectangular chips. When the last chip of the signal arrives at the filter input, all the previous

s(t) A

e o i

1 2 3 4 5 6 7 Ll Chip MF Out
8 9

Figure 6.7 Matched filter for the binary Barker signal of length N =7
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chips appear at the adder inputs with properly rotated polarities and sum in phase, producing
a central ACF peak. Before and after it there are sidelobes having the polarities and levels
relative to the mainlobe predicted by Table 6.2.
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Figure 6.8 Matched filtering of binary Barker signal of length N =7

Regretfully, binary Barker codes exist for only the lengths listed in Table 6.1. As
long ago as the early 1960s, Turin and Storer proved their nonexistence for any other
odd lengths and for even lengths at least within the range 4 < N < 12100." Extensive
efforts have been undertaken to find non-binary PSK Barker codes with an equidis-
tant phase alphabet (polyphase or M-ary PSK codes), but the results achieved so far
are not very encouraging. It was found that even a very modest advance towards

! According to [22] this range is now extended to 1 898 884 and it is hardly likely that binary Barker codes of
even lengths exist beyond it.
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longer lengths appears possible only in return for a significant increase of the phase
alphabet size M. Probably the longest polyphase Barker codes known to date and
found with the aid of the stochastic search have phase alphabets of size either from
hundreds to tens of thousands (N = 32—36) [23], or 60, 90, 120 (N = 37—45) [24].
A large alphabet size unavoidably entails grave hardware complications along with
much more severe and difficult to satisfy demands concerning implementation errors,
parameter drifts etc.

As can be seen, the lengths of the existing binary Barker codes are rather small to meet
the numerous practical needs, which has highly stimulated the search for binary
sequences of greater lengths with sidelobes not attaining the lower bound (6.4). Since
the non-normalized ACF of any binary sequence (5.9) is always the sum of the plus and
minus ones, possible values of p, max for non-Barker codes are 2/N,3/N,.... Only an
exhaustive search may result in the finding of globally optimal (having minimal possible
Pa.max > 2/N, length N given) binary code. Unfortunately, the computational resource
necessary for such optimization grows exponentially with length N and becomes
unrealistic when N exceeds 50. At least to the author’s knowledge, globally optimal
binary codes which have been found to date cover the length range up to 50 [25,26].

If we accept that longer globally optimal binary sequences are hardly obtainable,
problem (6.3) may be restated in a looser form: find the binary code with satisfactorily
small—without guaranteeing global optimality—aperiodic sidelobe p, max.- The general
idea of algorithms involved in solving this task consists in a preliminary picking of some
limited set of sequences, which seem promising for correlation properties, and subse-
quent exhaustive search to minimize p, max among only the sequences entering the set
selected. One example of this strategy is the evolutionary algorithm [27], whereby binary
codes were found up to length 100, including some which are slightly better than Barker
codes: the Barker code of length 13 has p, max = 1/13 &~ 0.077, while the best code of [27]
has p, max = 6/88 = 0.068. Another productive approach is based on equation (5.13)
linking aperiodic ACF with the periodic one. Denoting as p, max the maximal sidelobe of
the periodic ACF:

Pp,max = m:lr.,gl.%.)‘(N—lﬂpp (m)|}
and using the inequality max{|x + y|} < max{|x| + |y|} < max{|x|} + max{|y|} results
in the estimate pp max < 204, max OI:

1
Pa,max > Epp,max (65)

The implication of this relation is quite remarkable: the necessary condition of ‘good’
aperiodic ACF is good (having low maximal sidelobe p) max) periodic ACF. To put it
differently, sequences with good aperiodic ACF are present only among sequences with
good periodic ACF. As will be shown further, there are rather effective analytical tools
for constructing sequences with good periodic ACF. Thus, we may prepare some set of
sequences with good periodic ACF as the raw material for searching among them for
sequences with good aperiodic ACF. This opportunity determines the primary role of
periodic ACF in designing sequences with adequate correlation properties and clarifies
why, in the next section, we switch to investigating periodic ACF.
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6.5 Perfect periodic ACF: minimax binary sequences

Interest in sequences with good periodic ACF is not exhausted by their role as the basic
material for designing good aperiodic sequences. Many applications exploit periodic
discrete signals (CW-radar, navigation, pilot and synchronization channels of mobile
radio etc.), making periodic ACF critically important for system performance. We will
address as ‘perfect’ a periodic ACF which has only zero sidelobes, i.e. values between the
periodic mainlobes repeating with the period N. Using normalized notation, we write
this condition as:

1 1,m = OmodN
L 6.6
pr(m) EE:; iti=m { 0,m # OmodN (6.6)

where the congruence m = OmodAN is read as m is divisible by N (is multiple of N). It
is obvious that for the perfect ACF p, max = 0. Figure 6.9 shows the ACF of a discrete
baseband signal with rectangular chips, manipulated by the code with perfect periodic
ACF. The practical benefits of perfect ACF are obvious from Figure 6.10, where

R,(7)

Figure 6.9 Perfect periodic ACF

Ao do do
(a) -
A->I -~ |
[ — I
| NA
! agp agp agp
I
|
(b) - ~
I
i
| =P
I
I
I
I
I
I

Y

Figure 6.10 Resolution of signal replicas; perfect periodic ACF
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waveforms (a) and (b) show two time-shifted copies of the same bandpass periodic signal
whose code ACF meets (6.6). When the superposition of these signals arrives at the input
of the filter matched to a one-period segment of the signal, two time-shifted replicas of
the signal ACF are observed at the output. If the time delay between signal copies is
greater than ACF mainlobe duration 2A (but smaller than (N — 2)A), the filter responses
to both signals are entirely resolved with no corruption of each other (Figure 6.10c).

Let us investigate non-normalized periodic ACF of a binary sequence composed of
elements {£1}:

N-—1
Rp(m) = Z a;idi—m (67)
i=0

where the conjugation asterisk is not required, since all ¢; = £1. Summing both parts of
(6.7) over the range m =0,1,..., N — 1 produces:

N—1 N—1N-1 N-1 N-I
~ 2
Rp(m) - Z Z aidi—m = Z a; Z di—m :|a0| (68)
m=0 m=0 i=0 i=0 m=0
with:
N—1
ap = E a;
i=0
being the constant component (imbalance) of code sequence {ag, a1, . . .,ay—_1}. Since the

constant component of a binary sequence may take on only integer values, the sum in
(6.8) is a squared integer. Suppose now that a binary code has perfect periodic ACF.

N-1
Then R,(0) = (a;)> =N and R,(m)=0, m=1,2,...,N — 1, giving:
i=0

N—1
S Rylom) = N = Jaof? (69)
m=0

Assuming m # 0modAN, let N, and N, be the numbers of products a;a;_,, in the sum of
(6.7) equalling +1 and —1, respectively. Then R,(m) = N, — Ny = O means N, = N, and
N =N, + N; =2N,. Thus, according to (6.9) and the last result, length N is an even
squared integer, i.e. the necessary condition for obtaining perfect ACF for a binary
sequence is N = 4h%, where h is integer. All of these lengths (4, 16, 36, 64, ...) were
investigated in the early 1960s by Turin, who proved that the only binary code® with
perfect periodic PACF of length N < 12100 is a trivial one of length 4: +141+1—1 [28].
Later, the nonexistence of such sequences was proved up to lengths
N < 4 x 1657 = 108 900 [29]. Their existence beyond this range looks quite improbable.

2We do not consider as new (and it is universally adopted) sequences obtained from an initial one by a cyclic
shift, mirror imaging or changing signs of all elements. These transforms do not change periodic ACF
(Problem 5.5), and sequences obtainable from each other in this way are treated as trivially different or
equivalent.
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In the light of what has been said, it is important to figure out how low the maximal
sidelobe of periodic ACF of binary codes can potentially be. Let N, N, _, N_, denote
numbers of pairs a;a;_,, in (6.7), whose terms are indicated by the subscripts, e.g. N, _ is
the number of pairs where ¢; = +1,4a;_,, = —1. Since both N,y + N._and N,y + N_;
should produce the same outcome, the total number of positive elements over the code
period, Ny = N__. Then the difference:

=

N — Ry(m) = (I —aiaim) =2(Ni— + N_y) = 4N,

i

Il
S

is always divisible by four. It is clear, therefore, that for any binary code the non-
normalized periodic ACF always differs from length N by some multiple of four:

R,(m) = N — 4h (6.10)

where / is integer.

Clearly, in the absence of binary codes with perfect periodic ACF, next in attractive-
ness would be binary sequences for which R,(m) takes on only values £1 at
m=1,2,...,N—1, ie. ppmax = 1/N. As is seen from (6.10), value R,(m)=+1 is
possible only if length N =4h+ 1, while R,(m)= —1 may happen only for length
N =4h — 1, h being integer. This shows that binary sequences with p, max = 1/N may
have only two-valued non-normalized periodic ACF, either:

N,m = O0modN
+1,m # OmodN
for lengths N = 4h + 1, or:
N,m = O0modN
Ry(m) = " =IO (6.12)
—1,m # OmodN

for lengths N = 4h — 1.

Sequences meeting (6.11) or (6.12), and therefore having theoretically minimal
periodic ACF sidelobe (pp max = 1/N) for a binary code of odd length, are called
minimax. Only two examples (N = 5 and N = 13) of sequences complying with (6.11)
are known; at the same time, extremely powerful regular rules generating minimax
sequences obeying (6.12) do exist! Sections 6.6-6.9 present two of the most popular of
them, although at least three more are known.

6.6 Initial knowledge on finite fields and linear sequences
6.6.1 Definition of a finite field

To characterize conceivably constructing binary minimax sequences, we will need some
primary idea of finite fields. Our description will be less formal than that found in purely
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mathematical sources. Let us appropriate the name field to a set of elements on which
two operations are defined, called addition and multiplication and denoted by the
customary symbols ‘+” and ‘-’ (or ‘x’, or just writing elements one after another).
‘Defined” means that both these operations are closed, i.e. if x, y are elements of the
field F, then their sum and product also belong to F: x +y € F,xy € F. Zero ‘0’ and
unit ‘1’ elements should be present in any field, which do not change an arbitrary
element x € F in the addition and multiplication operations, respectively:
x+ 0 = x,x-1= x. The tables of addition and multiplication are so built that operations
are commutative (x+y=y+ x; xy = yx), associative ((x+y)+z=x+(Q +2);
x(yz) = (xp)z), and invertible, i.e. subtraction and division by non-zero elements are also
defined: x+y=z=x=z—y; xy =z, y# 0= x = z/y. This, in particular, entails the
existence of elements negative to x, denoted as —x = 0 — x, and inverse to non-zero x with
designation x~' = 1/x. Finally, operation tables should follow the distributivity law:
(x+y)z=xz+yz

It is obvious that the field is a set, within which we operate with elements, as we do
with real numbers in ordinary arithmetic. A field, thereby, is just an abstract general-
ization of the set of real numbers, or, putting it another way, the set of real numbers is a
trivial example of a field. Other examples are sets of rational numbers, complex numbers
etc. All of these fields have an infinite order, which means the number of elements in a
field. In contrast, the constructions below involve finite or Galois fields whose orders are
finite. In algebra (see, e.g. [30]) it is proved that finite fields exist of any (and only) orders
p" with arbitrary prime p and natural m. The standard designation of a Galois field
of order p™ is GF(p™). For our study prime fields GF(p) are sufficient, whose orders are
prime numbers (m = 1). The easiest way to treat a prime field GF(p) is to identify all
of its elements with p integers 0, 1, ..., p — 1, which are added and multiplied modulo p.
Figure 6.11 presents addition and multiplication tables for the three simplest prime
fields GF(2), GF(3), GF(5). Note that the negative of any two elements of GF(2) is the
same element itself, since 0 +0 = 1 4+ 1 = 0 and the only non-zero element 1 is inverse
to itself. Operations in all of the other prime fields are not that degenerated; for instance,
inGF(5)2+3=0=-2=3,and3-2=1=3"1=2

GF (2) GF (3) GF (5)
+ |0 1 +(0 1 2 +(0 1 2 3 4
0 |0 1 0(0 1 2 0|0 1 2 3 4
111 0 1|11 2 0 11 2 3 40
212 0 1 212 3 4 01
313 401 2
414 0 1 2 3
X [0 1 xX[0 1 2 X|0 1 2 3 4
0 |0 O 0(0 0 O 0|0 0 0 0 O
110 1 10 1 2 101 2 3 4
210 2 1 2|10 2 41 3
3|10 3 1 4 2
410 4 3 2 1

Figure 6.11 Addition and multiplication tables for the simplest prime fields



Time measurement, synchronization and time-resolution 163

6.6.2 Linear sequences over finite fields

Let us introduce a sequence dy, d|, ... with elements (symbols) of a given finite field
GF(p) obeying the linear recurrence:

di = —furdiy = foadia — = fodin, i=nn+1,... (6.13)

where coefficients fo, f1, . . . fu_1 are fixed constants belonging to GF(p). Such a sequence
is called a linear recurrent sequence over GF(p) of memory n. Elements of a linear
recurrent sequence are calculated one by one, each being determined by the n preceding,
so that setting » initial elements dy, d;, ..., d, | generates the whole sequence.

Example 6.6.1. Let us build the linear recurrent sequence of memory n =3 over GF(2)
(sequences over GF(2) are also attributed as binary) starting with initial elements dy =1,
d; =0,dx =0, if coefficients of the recurrence are £, =0,f; =1,f, = 1. Noting that in the
binary field the negative of any element is an element itself, recurrence (6.13) takes the form
d; = dj_o + di_3,i > 3, so that the sequence is 1,0,0,1,0,1,1,1,0,0,1,0, 1,1, .... This
sequence is periodic of period 7.

Example 6.6.2. Construct the linear sequence over GF(3) (ternary sequence) of memory
n =23 set by initial symbols dy =1,d; =0,db =0 and coefficients of recurrence (6.13)
=0, =2, fpb=1. Since in GF(B8) —-2=1,-1=2, recursion (6.13) takes the form
d; = di_o + 2d;_3,i > 3, so that the desired sequence is 1,0,0,2,0,2,1,2,2,1,0, 2, 2, 2,
0,0,1,0,1,2,1,1,2,0,1, 1, .... Itis noteworthy that the sequence obtained is again periodic
with period 26, each period consisting of two blocks of length 13, and the second block just
being a repetition of the first multiplied by 2.

Let us turn to Figure 6.12, which shows a typical generator of a linear recurrent
sequence. According to its structure this scheme is called the linear feedback shift
register (LFSR). The register includes n p-ary delay stages or flip-flops (shown by
squares), each having p possible states and storing some element of GF(p) during a

I
i—1

e

Figure 6.12 LFSR generator of a linear recurrent sequence
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clock interval. The clocking circuit (not shown) controls the register in such a manner
that every clocking transmits the state of any stage to the next one from left to right.
The feedback includes multipliers to multiply elements (states) stored in stages by
constants (f;) and adders. Certainly, both arithmetic operations are made by the rules
of the finite field GF(p).

Suppose that initial states (i.e. initial sequence symbols) d,,_1,d, 2, ..., dy are fed into
the register stages from left to right as shown in Figure 6.12. Then the state of the
feedback output will be —f,_1d,_1 — fu_2d,_> —--- — fody = d, and after a clocking
the contents of the register appears to be d,,d,_1,...,d;, generating the feedback state
—fo1dy — fu2dy1 — - — fodi = d,y1. After the next clocking the register state is
dpi1,dy, . ..,dr and so forth. In general, current register contents d;_i,d;_»,...,d;_,
creates the feedback state d;. Therefore, a complete linear recurrent sequence may be
read directly from the rightmost stage, starting with the very first symbol dj, or from any
other stage with an appropriate advance.

Certainly, one or another stage is connected to an adder through a multiplier only if
an appropriate feedback coefficient f; is non-zero, otherwise there is no need for a
connection at all.

Example 6.6.3. Figure 6.13a presents an LFSR generator for the binary sequence of Example
6.6.1. Note that in the case of binary sequences multiplication by one is just connection
between a stage output and an adder. Figure 6.13b shows successive register contents
(stage states) and states of the feedback output (point ‘FB’ in the scheme) as clocking
happens. The sequence is read out as consecutive states of the rightmost stage. Reading
states of other stages results in replicas of the same sequence having a lead of one or two
clocks.

Clock | 78 Register contents
o 1 [ 23
1 1 0 0 1
+ 2 0 1 0 0
3 1 0 1 0
4 1 1 0 1
| 5 3 5 1 1 1 0
> > 6 |0 1 1 1
FB di_ d;_5 di_3 7 0 0 1 1
(a) (b)

Figure 6.13 Generator of a binary sequence of length 7 (a) and its table of states (b)

Since the number of different register contents is finite (never greater than p") the
situation is unavoidable where after some number of clocks the content repeats
one that occurred earlier. But starting with some initial loading, i.e. fixed contents,
the scheme of Figure 6.12 generates only the unique sequence defined by (6.13).
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Therefore, repetition of the register contents leads to a repetition of all sub-
sequent generated symbols, meaning that any linear recurrent sequence is periodic.
Furthermore, as is seen directly from (6.13), occurrence of zero contents of the register
(zeros in all stages) will always be followed by the infinite degenerated sequence
consisting of only zeros. Certainly, such a case is absolutely worthless, so zero contents
of the register should be prohibited. This leaves no more than p" — 1 allowed register
contents with the implication that the maximal sequence period is never longer than

Pl —1.

6.6.3 m-sequences

Linear recurrent sequences having the biggest period L = p” — 1 are of particular
interest in modern information technology and are called maximal-length sequences or
m-sequences. Being fully deterministic, they possess many properties peculiar to random
sequences, e.g. to the sequence of heads and tails in a series of flipping a fair coin. The
following features make m-sequences extremely valuable for constructing codes with
good autocorrelation:

1. The balance property. On a single period of a p-ary m-sequence any non-zero
element of GF(p) occurs p"~! times while the zero element occurs p"~! — 1 times. To
make sure of that it is enough to note that all possible p” — 1 non-zero contents of LFSR
should be passed in one or another order during generation of one period of the
m-sequence, otherwise the period will not be maximal. All those contents are just

different n-digit p-ary numbers from the range 1, 2, ..., p” — 1 and the m-sequence read
from the rightmost register stage may be treated as the sequence of rightmost digits of
these numbers. Running over the range 0, 1,..., p"” — 1 would produce any p-ary digit at

any specific (e.g. rightmost) position of an n-digit number exactly p"~! times. Throwing
away the all-zero n-digit number will reduce by one only the number of occurrences of
zeros among the rightmost (or any other) digits. Specifically, the period of a binary m-
sequence of memory n L = 2" — 1, and there are Ly = 2"~! — 1 zeros and L; = 2"~! ones
in it. For instance, one may see that the sequence obtained in Example 6.6.1 is a binary
m-sequence with period L = 2% —1 =7 containing within a period Ly =2>—-1=3
zeros and L; = 2> = 4 ones. The sequence of Example 6.6.2 is a ternary m-sequence of
length L = 3% — 1 = 26, having in a period Ly = 3> —1=8zerosand L; = L, = 3> =9
repetitions of each of elements 1 and 2.

2. Any two m-sequences generated by the same recurrence (6.13) differ from each
other by no more than a cyclic shift. Indeed, since with fixed initial » elements (6.13)
fully determines a sequence, two non-coinciding m-sequences generated by a fixed
recurrence cannot have absolutely identical # initial elements. On the other hand,
all contents of the LFSR generator but zero occur at one m-sequence period, and after
the content reproducing the initial state of the first generator occurs in the second, the
second sequence completely repeats the first one, i.e. is just some delayed replica of the
first m-sequence.

3. Shift-and-subtract property. Take some m-sequence defined by (6.13) and sub-
tract from it element-wise (certainly, modulo p) its own replica cyclically shifted by m
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(m is an arbitrary integer) positions d;, = —fp_1ditm—1 — fo2ditm—2 — ++ — fodivm—n-
The result is:

di - di+m = _fnfl(difl - di71+m) _fan(difZ - di72+m) - _fO(difn - difner)

After denoting d} = d; — d;1,, we come to the linear recurrent sequence whose elements
d! are defined by the original recurrence:

diy=—foad —fuad| 3= —fod |, (6.14)

Only two possibilities are now expected. Suppose first that the shift m equals the integer
number of periods L. Then d; = d;;,, and d; =0 for all i, i.e. (6.14) is an all-zero

sequence.
Now let m be not a multiple of L. Then d; and d;,,, can not be identical for all
i=0,1,...,n—1, since otherwise we would have the same initial contents of the

generator for both the sequence and its shifted replica. This would imply a complete
coincidence of the original sequence and its replica, because the initial loading defines a
unique sequence generated by the recurrence (6.13). But the shifted replica repeats the
original sequence only being shifted by some multiple of the period, which is contrary to
the assumption. It is seen then that the recurrence (6.14) completely reproducing (6.13)
generates some non-zero sequence. However, according to the previous property, when
recurrence (6.13) or, equivalently, a corresponding scheme of Figure 6.12 generates an
m-sequence starting with some definite initial loading, it may generate all but another
shifted replica of this very m-sequence when starting with different non-zero initial
loading. The conclusion we have arrived at is as follows: symbol-wise subtraction of
two shifted replicas of the same m-sequence produces either an all-zero sequence, if the
shift is a multiple of the period, or some new shifted copy of the same m-sequence
otherwise.

For binary sequences subtraction coincides with addition, which explains why in this
case the same property is often referred to as shift-and-add. Turning again to Example
6.6.1 we may see, for instance, that addition of the sequence obtained there to its two-
position left-shifted replica 0, 1,0, 1,1, 1,0,0, 1,0, 1, 1, 1, 0, ... results in the sequence
1,1,0,0,1,0,1,1,1,0,0, 1,0, 1, ..., being again the original sequence right-shifted
cyclically by one position.

The reader is advised to examine the same property for the ternary m-sequence of
Example 6.6.2.

Clearly, to generate a p-ary m-sequence, i.e. the sequence with maximal length
allowed by a given memory n, rather than a sequence of some shorter length, adequate
choice of the coefficients f; in the recurrence (6.13) (or in the feedback of LFSR) is
needed. The necessary and sufficient condition for a linear recurrent sequence to be an
m-sequence is that f;,i=0,1,...,n— 1 are coefficients of the primitive polynomial
f(x) = X"+ fr X"V £ 0xX" 2 4 -+ fo of degree n over GF(p). The primitive poly-
nomials are a subclass of irreducible polynomials. A polynomial f(x) of degree n over
GF(p) (i.e. with coefficients in GF(p)) is called irreducible over GF(p) if it cannot be
factored into two polynomials of degrees smaller than n. These polynomials play the
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same role among all polynomials as prime numbers among integers. Not all arbitrary
irreducible polynomials need to be primitive, although in a special case p = 2 and prime
2" — 1 all irreducible polynomials are primitive. Proving the necessity and sufficiency of
choosing feedback as indicated above would require some more algebra, which could
take us far away from our main purpose. An interested reader may find the details in
numerous sources (e.g. [31,32]).

Primitive polynomials are extensively tabulated in books on modern algebra and
coding theory or (mostly for p = 2) spread spectrum telecommunication [5,6,18,32].
Another option is a computer search, which is not at all a difficult task (e.g. Problem
6.47). In particular, ready-made functions for finding primitive polynomials are present
in the Matlab Communications Toolbox.

As a whole, designing an m-sequence generator is pretty straightforward. When p is
selected, a necessary length L determines the memory 7, and finding an appropriate
primitive polynomial exhausts the issue.

Commenting again on Examples 6.6.1 and 6.6.2, note that the binary m-sequence of
length 7 is built based on the primitive polynomial f(x) = x> 4+ x 4+ 1 over GF(2), while
the primitive polynomial over GF(3) used to generate the ternary sequence of length 26
is f(x) = x* +2x + 1.

6.7 Periodic ACF of m-sequences

The results of the previous section lead quickly to the minimax binary sequences with
ACF meeting (6.12). Consider a binary m-sequence {d;} of memory n, i.e. length
L =2"—1. Let us map its symbols 0, 1 onto a binary alphabet +1 according to the
rule:

d +1,d;=0
a;=(—1) {—l,dle (6.15)
where in raising (—1) to the degree d; the latter is treated as though it is a real number 0
or 1. The sequence {g;} of real binary symbols +1 thus obtained has period
N =L =2"—1 and is a one-to-one image of the original binary m-sequence {d;}. It is
natural to keep for it the same name binary m-sequence as well. When the confusion is
risky, a supplementary label like binary {41} sequence versus binary {0, 1} sequence
may be used. Let us find the non-normalized periodic ACF (6.7) of {a;}:

L-1

N—-1
Rm) = 3 i = Y (—1) (=1 = 3 (1t (6.16)
i=0

i=0 i

~

Il
<)

Now the shift-and-add property of binary {0,1} m-sequences may be brought in.
Addition in the exponent here may be treated as modulo 2, since it will produce the
same result of exponentiation as an ordinary arithmetic summation. But then
{d!} ={di + di_n} is a binary {0, 1} m-sequence of period L whenever m # OmodL,
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or an all-zero sequence otherwise. Due to the balance property, one period of
{d'} = {d; + d;_,,} contains Ly=2""'—1 zeros and L; =2""! ones, therefore the
sum in (6.16) contains Ly plus ones and L; minus ones if m # Omod N, so that:

N,m = 0modN
Rp(m) = L() — Ll =
—1,m # OmodN

As is seen this coincides exactly with (6.12), confirming that binary m-sequences are
minimax ones.>

Example 6.7.1. Consider again the sequence of Example 6.6.1. Its mapping onto the
alphabet {+1} in accordance with (6.15) produces the {+1} m-sequence —1, +1, +1, — 1,
+1, —1, —1,.... Table 6.3, which contains only the minimum necessary number of entries,
illustrates calculating the periodic ACF of the sequence. It is interesting also to study the
matched filter processing of a discrete signal modulated by this binary sequence. Figure 6.14
presents such a filter matched with one period of a baseband rectangular-chip periodic signal.
All units in this structure are absolutely similar to those of Figure 6.7. Waveforms at
characteristic points of the filter are shown in Figure 6.15. As is seen, the output waveform
has mainlobes repeating with period NA and a uniform sidelobe background of negative polarity
seven times smaller than the mainlobe level.

Table 6.3 Calculating periodic ACF of the binary m-sequence
(—++—-+--)

m 0] ap a as ag ds ae Rp(m)
0 - + + — + — — +7
1 - - + + - + — -1
2 — - — + + - + -1
3 + — — — + + — —1

T@T@I@Tﬁtﬁgﬁl

! 2 3 4 5 _ o)
5 o ChipMF —»

Figure 6.14 Matched filter for the binary m-sequence of length N =7

3 Generalization of mapping (6.15) onto sequences over GF(p), p > 2 is a; = exp (j2rd;/p), resulting in poly-
phase (p-phase) code, whose periodic ACF again satisfies (6.12). However, polyphase codes of this sort with
p > 2 are of less practical interest than minimax binary sequences.
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Figure 6.15 Matched filtering of periodic binary m-sequence of length N =7

Binary m-sequences are among the most popular discrete signals in modern informa-
tion technology due to their optimal periodic correlation properties and very simple
generating and processing circuitry. Probably one of the most demonstrative examples
of their practical involvement is 2G cdmaOne (IS-95) mobile phone, where m-sequences
of various lengths are used as pilot signals for initial synchronization, base station signal
multiplexing and data scrambling.

In addition, m-sequences represent the basis for deriving other important signal
families (Kasami, Gold and others; see Chapter 7).

At the same time, the set of lengths N = 2" — 1 = 3,7,15, 31,63, 127,255,511, 1023, ...
where these sequences exist, is rather sparse, which sometimes may appear technologic-
ally obstructive. This is a reason for studying one more interesting class of binary
minimax sequences, but before attending to that some additional insight into finite
fields is required.
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6.8 More about finite fields

Let us take some element x of a finite field GF(p) and multiply it with itself m times,
designating the result as the mth power of x:

X x-...-x=x"
—_

m times

The ordinary rules of handling powers in conventional algebra remain valid in any field,
including finite ones. In particular:

n
X'X'=xxc o xxoxc o x=xXc .o x =X (M) =X XX =
—
m times n times m+n times n times

Furthermore, denoting the nth power of x~!(x # 0) as x~", we have:

XX =xoxc . exex Lex oo xT!

m times n times

Using repeatedly the definition of the inverse element x~'x = 1 leads to:

X" " m>n

In particular, the equality:

Xox-oox-x exlo o xl=1=x"xT"=x

m times m times

and uniqueness of the inverse of any non-zero element give:

¥ =1and (¥")'=x"

Example 6.8.1. In the field GF(5) (see tables of Figure 6.11):

20=1,2"=222=2.2=428=22.2=-4.2=32=2.3=3.2=1
21 =322=(27")=32=423=-(2")°=3-4.3-224=(27")*=3"=2.3-1

Consider now successive degrees of the element x # 0 of GF(p): x° = 1, x',x?,.... Since
all terms of this series belong to GF(p), i.e. finite field, they cannot all be different, and
therefore equality holds x' = x* = x"¥ =1 for some i > k. Suppose that the element
« exists whose first p — 1 powers o’ = 1,a',a?,...,a” 2 are all different. Since p — 1
is just the number of non-zero elements of GF(p), the powers above are exactly all
non-zero elements of GF(p). Therefore, the element «, if it really exists, allows con-
structing the whole field GF(p) but the zero element by just raising a to powers
0,1,...,p — 2. Such an element is called a primitive one.

One of the most important facts about finite fields is that they all contain a primitive
element. Proof of this result may be found in many algebraic or coding theory textbooks
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(e.g. [30,32,33]). A primitive element is not unique: in any finite field whose order
exceeds 3, more than one primitive element is present. For instance, as is seen from
Example 6.8.1, both 2 and 3 are primitive elements in GF(5).

Since for a primitive element powers o’ = 1,a',a?,...,a” 2 exhaust all non-zero
elements of GF(p), o' should be equal to one of them. Actually it cannot be equal to
anything but 1, because o’ = of with 0 < / < p — 2 means that o#~!~/ = 1. This is not
possible, since 1 < p — 1 —/ < p — 1 and among elements o', a?, ..., "% none may be
equal to 1. Hence, o' = 1. Now it is easy to see that the same is true for any non-zero
element of a finite field, not only for a primitive one. Indeed, every non-zero element x
of GF(p) is the /th power of a primitive element for a proper integer /: x = o/, so that
(small Fermat theorem):

= (oY = o) = (@) = (6.17)

The next entity bears quite a natural name, fully consistent with the categories of
ordinary algebra. The integer exponent /, which after raising o to it produces x = o/,
is the logarithm of x to the base o with a conventional designation log, x. Therefore,
log, x _
/%%t = x,
Now consider only the prime fields of an odd order (p > 2) and introduce a new
notion of the binary character y)(x) of a non-zero element x defined as follows:

1, log, x = 0mod2

v(x) = { —1, log,x #0mod2 — (=1 (6.18)

Clearly, the binary character is simply a mapping of the finite field GF(p) onto a pair of
real numbers {+1, —1}, transforming non-zero element x into +1 if its logarithm is even
and into —1 otherwise. Note that this mapping does not depend on a specific choice of a
primitive element (Problem 6.24). The following properties of a binary character will be
used further:

1. The character of the unit element of GF(p) is always one:
Y(1)=1. (6.19)

This is true because o’ = 1 = log, 1 = 0.

2. The character is a multiplicative function, i.e. the character of a product of two non-
zero elements is a product of their characters. Indeed, from (6.17) and (6.18):

Y(xy) = (= 1)) = (—p)or oy — (_pyles L ()R — y(x)y(y)  (6.20)

3. Balance property: the sum of characters of all non-zero elements of GF(p) is zero:

p—1 p—1
S v =Y (—)er =o. (6.21)
x=1 x=1

To prove this equality note that when x assumes all p — 1 non-zero values, log, x
runs in some order over the range of p — 1 integers 0, 1, ..., p — 2. Due to the oddness
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of p, the number of integers in this range is even, so that (p — 1)/2 of them are even
and (p — 1)/2 are odd. Therefore, the sum above contains an equal number of plus
and minus ones and comes to zero.

4. Consider the character of the element —1, ie. #(—1). Since all elements
a',i=0,1,...,p—2 are different, only two of them satisfy the equation x> =1,
namely 1 and —1. Since the same equation is met for a]%], the last element cannot
be anything but —1. This entails equalities log, (—1) = ”%1 and:

1, p = 1mod4

sy =(F={ b P e (622)

Example 6.8.2. Continuing Example 6.8.1, note that in GF(5) (2) =(3)=-1 and
(1) = Pp(4) = +1. Therefore, ¥(2-4) = (3) = —1 = Y(2)yY(4) = (—1) - (+1) in accordance
with the multiplicative property and (1) + ¥(2) + ¥(3) +¢(4) = 0 in line with the balance
property. Also ¢ (—1) = ¢(4) = 1, which is in agreement with (6.22), since 5=4-1+1.

Another name for a binary character especially popular in number theory is Legendre
symbol, which explains the name of the sequences studied in the next section.

6.9 Legendre sequences

Let us form a binary sequence of an odd prime length N = p identifying the position
number 7 of its element ¢; = £1 with an element of the prime field GF(p). Then for every
i€{l,2,...,N — 1} the character ¢(i) is determined and the Legendre sequence is just the
sequence of characters of numbers i except zero i, for which the sequence element is forced
to +1.* For a periodic version of the Legendre sequence the generation rule is as follows:

a»{+1’ i = 0modN

Y(i), % 0modN (6.23)

The periodicity of the sequence (6.23) with period N stems from the treatment of
numbers i in (i) as elements of GF(p), where addition obeys modulo p arithmetic,

resulting in (i + N) = (i + p) = ¥(i).
To investigate the periodic ACF of a Legendre sequence, substitute (6.23) into (6.7)
and separate from the sum terms containing ay:

N—-1 N—-1
R[J(m) = Z aidi_, = aod—_y + amap + Z aidi—m
pary =

i#m

p—1
= P(=m) +(m) + Z Pi)y(i —m) (6.24)

i#m

4 Another option leading to the same final result is forcing this element to —1.
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Certainly, we are interested in estimating only the sidelobes, i.e. shifts m, which are not
multiples of N =p. Exploiting the multiplication property (6.20) gives
P(—=m) = P(=Dyp(m) and (i —m) = Pli(1 — mi~")] = P()p(1 —mi~"), where the

inverse always makes sense, since zero i is removed from the sum in (6.24). As a result:

p—1
Ry (m) = ¢(m)[1 +¢(—1)] + Z G ()p(1 —mi") (6.25)

i#m

Turn now to (6.22). For any length N = p = I mod4 ¢( — 1) = 1 and the first term in
the expression above equals 2¢(m) = +2 for any m # 0 modN. On the other hand, for
lengths of the type N = 3mod4 ¢(—1) = —1 and the same term of (6.25) vanishes. To
cope with the second term in (6.25), note first that for any non-zero i from
GF(p) ¥*(i) = 1. Second, if i ran over all non-zero elements of GF(p) then i~ as well
as —mi~! (m # 0modp) would both run over the same range in some other orders.
Therefore, 1 —mi~! would run over p — 1 elements of the field including zero but
excluding 1, since —mi~' cannot take zero value. Actually, however, the zero element
should also be eliminated from the possible values of 1 — mi~!, since i in the second term
of (6.24) does not take on the value i = m, corresponding to 1 — mi~! = 0, and the whole
range of values 1 — mi~! is from 2 to p — 1. Summarizing all these reasons:

p—1
Zz/)z(i)w(l—mi”): ) = D w(x) = (1) = —1

i#m

where the final step follows from the character properties (6.19) and (6.21). Now the
periodic ACF of a Legendre sequence appears to be one of two types (4 below is natural):

1. If length is of the form N = 4h+ 1 (i.e. N = 1 mod4), then:

N, m = 0modN
—3 or +1,m # 0modN
2. If length is of the form N = 4k + 3 (i.e. N = 3mod4), then:
N, m = 0modN
Ry(m) = { -1, m#0modN (6.27)

The last result, reproducing (6.12), shows that Legendre sequences of lengths
N = 4h + 3 are minimax, i.e. possess optimal periodic correlation properties possible
for binary sequences of odd lengths.

Example 6.9.1. Length N = 7 falls within the set N =4h+ 3. The element 3 is primitive in
GF(7), since raising it to the powers 0, 1, ..., 5 gives all different non-zero elements:
30 =1,3"=3,32=2,3% =6,3* = 4,35 = 5. As is directly seen from this series, logarithms
of 1, 2 and 4 are even, while those of 3, 5 and 6 are odd. Hence, (1) = ¥(2) = (4) = 1, and
¥(8) = ¥(5) = ¢(6) = —1. Now, according to (6.23), placing plus ones in the positions
i=0,1,2,4 and minus ones in the positions i =3,5,6 gives the Legendre sequence of
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length 7. The computation illustrated by Table 6.4 confirms the optimality of the correlation
properties of the binary sequence obtained.

Table 6.4 Calculating periodic ACF of the Legendre sequence
{(+++-—+-—-}

m ag a; a as ay as de R,(m)
0 + o+ o+ -+ = = +7
1 - + + + - + — -1
2 e T S ~1
3 + - -+ 4+ o+ - ~1

Legendre sequences form a very powerful class of binary codes with minimax periodic
ACF. The condition of their existence (any prime length of the form N = 4h+ 3) is
significantly looser than that of m-sequences (N = 2" — 1), which means that a lot more
Legendre sequences are available as compared to m-sequences. For example, within
the range 50-1500 binary m-sequences exist of only 5 lengths, while the number of
Legendre sequences is 114.

6.10 Binary codes with good aperiodic ACF: revisited

After collecting necessary knowledge on binary sequences with good periodic ACF, we
may return to the idea formulated in Section 6.4 and consisting in utilizing these
sequences as a starting point for finding codes with attractive aperiodic ACF. Consider
some sequence dg, aj,...,day—; of length N. Any of its cyclic shifts ay, as.1,...,ay_1,
ap, - .. ,as_1, where 0 < s < N — 1, has the same periodic ACF as the original code, since
the periodic ACF is invariant to a cyclic shift (see Problem 5.5). Yet the aperiodic ACF
of the cyclically shifted replica may differ from the initial one. Along with the bound
(6.5), this fact sets up the basis for a popular algorithm for searching codes with an
acceptable aperiodic ACF described below.

At the first step a set of candidate sequences with good periodic ACF, length N pre-
assigned, is somehow collected. It may include all known sequences [34-37] of a given N,
whose periodic ACF sidelobes—consistent with (6.5)—allow one to hope for a low level
of pamax, Or be limited according to the designer’s technological preferences. For
example, if a binary code of length N = 63 is sought, the initial set may be limited to
only all m-sequences of this length (no Legendre sequence of this length exists, since N is
not prime), or include more sequences with promising periodic ACF; with necessary
length N = 127 it may cover all m-sequences along with Legendre sequences’ or, again,
contain other sequences with sufficiently low periodic sidelobes.

3 A score of different primitive polynomials of the same degree may exist, each generating a specific m-sequence
of the same length. Therefore, a quantity of m-sequences of the fixed length exists and all of them are appropriate
for the search for good aperiodic codes. Unlike this, there are only two possible Legendre sequences of the same
length differing by the first symbol (41 in one of them and —1 in the other, see footnote 4 on p. 172).
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At the second step the exhaustive search is performed over all one-period segments of
candidate sequences by the criterion of the least maximal aperiodic ACF sidelobe.
Specifically, one period segment of the first candidate sequence is taken, its aperiodic
ACF is computed and its maximal sidelobe is stored in memory along with the numbers
of the candidate sequence and its shift. Then the segment is cyclically shifted by one
position and all the calculations are repeated. If an updated maximal aperiodic sidelobe
is lower than the previous one, its value and new shift number replace the previous data
in memory; otherwise registered data are kept unchanged. These iterations are repeated
N times, i.e. for all cyclic shifts of the first candidate sequence, after which the next
candidate sequence is tried in the same way, etc. The outcome of the search is the
sequence with minimal value of p, max among all sequences picked at the first step. Of
course, there is no guarantee that the result will be the best possible among all binary
sequences of a given length.

This procedure, which was first proposed in the early 1960s, has been used by many
authors, gradually covering wider and wider sets of candidate binary sequences. One of
the most detailed lists of binary codes synthesized in this way may be found in [34].

Example 6.10.1. Length N =23 — 1 =7 meets the condition of existence of m-sequences.
There are two primitive binary polynomials of degree 3 f(x)=x3+x+1 and
f(x) = x3+ x> 4+ 1. An immediate test shows that m-sequences generated by them are
just mirror images of each other, i.e. one of them is the other read from left to right. Such a
transform does not affect either periodic or aperiodic ACF (Problem 5.5). Therefore it is enough
to include in the candidate set only a single m-sequence: that of Example 6.7.1: —1,+1,
+1,—-1,+1,—1,—1. In addition, N = 7 is prime of the sort N = 4h + 3, i.e. minimax Legendre
sequences of this length exist, too: the one of Example 6.9.1 (+1,+1,+1,-1,+1,—-1,—-1) and
its replica with the first element changed to —1. The latter completely repeats the m-sequence
selected, while the former—after changing the signs of all elements—coincides with a cyclically
shifted skipped m-sequence. Since the polarity change again does not affect either periodic
or aperiodic ACF (Problem 5.5), only one minimax sequence out of the four analysed
is sufficient to enter the candidate set. Let it be the Legendre one starting with +1.
Calculating its aperiodic ACF gives the following values of R;(m), m=1, 2, ...,6:
0,+1,0,—-1,-2,—1, and p, max = 2/7. After one cyclic left shifting the sequence becomes
+1, +1, — 1, +1,-1,—1,+1. For this Rs(4) = —3, pa,max = 3/7, i.e. the maximal aperiodic
sidelobe is worse than for the original one. The next cyclic shift is +1, —1,+1, -1, -1, +1, +1
with Rz(1) = —2, pa max = 2/7, i.e. no better than for the initial sequence. At the next shift
we come to the sequence —1, +1,—1,—1,+1,+1,+1, having aperiodic ACF with sidelobes
Ra(m) =0, —1;, m#0, i.e. ps max = 1/7. This sequence is globally optimal among all
PSK codes, since no such code can have smaller maximal aperiodic sidelobe (see (6.4)).
Actually, the Barker code of length 7 is found which is a mirror replica of that of Table 6.1.

Example 6.10.2. Assume N = 257 = 64 x 4 + 1. Since the number 257 is prime, two Legendre
sequences of this length exist differing in only their first symbol. However, N is of the form
4h+1, and hence their PACF has maximal sidelobe pp max = 3/N = 3/257 (see (6.26)).
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Nevertheless they remain promising from the point of view of p, max, Since the lower border
(6.4) gives pa max > 1.5/257. Applying to them the above procedure results in the sequence with
maximal non-normalized aperiodic sidelobe equal to 12, i.e. pg max = 12/257 or —26.6dB
(compare this with the longest binary Barker code, for which pa max = 1/13 or —22.3dB). The
sequence obtained after eliminating the last symbol turns into the code of length N = 256 with
the same maximal non-normalized sidelobe and p, max = 12/256 = 3/64, i.e. again
approximately —26.6 dB. Its aperiodic ACF is shown in Figure 6.16a. Interestingly, in the 3G
mobile UMTS standard the primary synchronization code is a binary sequence of this very
length, N = 256, having aperiodic sidelobes up to 1/4 (Figure 6.16b), i.e. much higher as
compared to the sequence just found. On the other hand, the choice of a code for a cell
search in UMTS was subject to many other requirements, including implementation issues
which might have overpowered the criterion of good autocorrelation.

1.0
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0.6
0.4
0.2

0.0 iy i Apihanes i e

-0.2

-250-200-150-100 =50 0 50 100 150 200 250 -250-200-150-100 =50 0 50 100 150 200 250
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Figure 6.16 Aperiodic ACF of two binary codes of length 256: the code of Example 6.10.2 (a)
and primary synchronization code of UMTS (b)

Figure 6.17 presents one more illustration of the optimization of binary codes in the
maximal aperiodic ACF sidelobe, showing the dependence of p, max on length N for
presumably the best binary sequences taken from [25-27,34]. The dashed line shows the
CUI'VE Py max ~ 0.77/v/N approximating the dependence Pamax =Jf(N) as a/v/N with a
fitted by the least-squares method. As is seen, the accuracy of this approximation is
rather good, especially for N > 100.

6.11 Sequences with perfect periodic ACF

As has been indicated time and again, numerous applications exist where the periodicity
of the signals makes their periodic correlation properties primarily important. In other
words, good periodic ACFs are not only a powerful intermediate tool to design good
aperiodic sequences but very valuable in themselves. Examples of this sort include
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Figure 6.17 Dependence of the minimized maximal aperiodic sidelobe on length

continuous wave ranging systems, in particular in remote space, pilot or synchroniza-
tion channels for digital data transmission systems (downlink pilot channels of
cdmaOne and ¢cdma2000, secondary synchronization channel of UMTS), CW radar
and sonar systems etc.

Despite binary {+1} minimax sequences look rather practicable, having maximal
periodic sidelobe p, max = 1/N dropping with length, situations are still likely where an
acceptable value of p, max requires an infeasibly long length N. For example, for radar,
ranging or sonar systems time-resolution of signals in the dynamic range over 80 dB is
not an unusual demand. To meet it with optimal binary sequences, lengths exceeding 10*
are necessary, which may unreasonably slow down the initial searching procedure
(see Section 8.2). Certainly, perfect periodic ACF (6.6) would be the best option for
many such scenarios. However, it cannot be realized among binary codes, which are,
clearly, the most attractive technologically. In the rest of this chapter we will inspect
possible ways of getting perfect periodic ACF when the sequence alphabet is not
rigorously limited to just binary symbols {£1}.

6.11.1 Binary non-antipodal sequences

Replacing the antipodal alphabet {+1, —1} by some binary non-antipodal one, it proves
to be possible to turn all periodic sidelobes of any binary minimax sequence meeting
(6.12) into zero. The simplest way to derive an appropriate alphabet is by adding a
constant ¢ (complex in the general case) to the original {+1,—1} sequence
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ap,dap, - - . ,ay—1, converting symbols +1 and —1 to 1 4+ ¢ and —1 + ¢, respectively. The
periodic ACF of the sequence thus obtained is found directly:

N-1 N-1
Ry(m) =" (a;i+ ) (aim +¢") =Y @itti_m + 2Re(cdy) + Nlc|* (6.28)

i=0 i=0
where ay = Zfi 61 a; is, as before, a constant component of the initial sequence
ap,ai, - . .,ay—1. Equation (6.8) shows that for any minimax sequence meeting (6.12)
|[10|2 = ZHN;S R,(m) =N+ (N — 1)(—1) = 1 = ap = %1. Since changing the signs of all
elements does not affect ACF, we may consider only sequences with ¢y = —1. Again, for

any minimax sequence meeting (6.12), the first sum in the right-hand part of (6.28)
equals —1 at any m # OmodN. Setting sidelobes of the sequence a; +c¢,i=...,

—1,0,1,... equal to zero leads to the equation in a complex unknown c:
2 1 2 1
ER + 5 Re(edn) -+ = |c|? —yRe(0) — =0 (6.29)

This equation in two real unknowns (real and imaginary parts of ¢) has an infinite
number of solutions. Let us find those that are potentially most interesting. If a real
alphabet is desired Re(¢) = ¢ and \c|2 = ¢? 50 (6.29) is a quadratic equation:
2 1
2

2 _Z e _=0

CTNTN
with roots ¢ , = 1EVNVEL V]\ﬁv“ New binary non-antipodal symbols 1 4+ ¢ and —1 4 ¢ may now
be divided by 1 + ¢ to retain +1 as one of the symbols in the new alphabet. After this we
come to the rule of converting a binary minimax sequence with periodic ACF (6.12) into
one with perfect ACF: elements —1 should be changed to:

NAIEVNIT 2

N+1+VN+1 VN +1

Elements +1 remain unchanged.

Example 6.11.1. The m-sequence or Legendre sequence of length N = 127 is transformed into

a sequence with perfect periodic ACF by replacing all elements —1 by —1 + ﬁé.

The solution above produces an alphabet with two opposite symbols of unequal
magnitude, i.e. results in amplitude modulation (Figure 6.18a). Another possible option
is a PSK non-antipodal alphabet. To come to it take a ‘pure’ imaginary ¢ = jc;. Then
(6.29) has the solution ¢; = +j//N and new symbols 1 4 j//N and —1 % j/y/N after
dividing by 1 + j//N become 1 and:

~VN+j_ N-1 2VN _
VN+j  N+1 N+1
where cos® = (N — 1)/(N + 1) (Figure 6.18b).

—exp(jP)
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Figure 6.18 Non-antipodal binary alphabets

Example 6.11.2. For N = 127 cos ® = 63/64 and ® = + arccos (63/64) ~ +10°8'30". Changing
all negative elements of the binary m-sequence or Legendre sequence of length N = 127 to
— exp (j®) produces a sequence with perfect periodic ACF.

The alphabet transformation just discussed, which has been proposed and reopened
repeatedly [38,39], can hardly be recognized as very effective practically. As is seen and
confirmed by examples, it prescribes rather exotic values of code complex amplitudes,
the setting and holding of which with adequate precision may appear technologically
infeasible.

6.11.2 Polyphase codes

Involving non-binary PSK modulation with M > 2 opens the way to numerous poly-
phase sequences with perfect periodic ACF. There are various rules for their construc-
tion, but more or less all of them originate in two of the most popular algorithms. The
first, corresponding to Chu (or quadratic residue) codes, is very straightforward and
approximates in a discrete form the law of linear frequency modulation (cf. Section 6.2).
The Chu code exists for an arbitrary length N and is generated as:

exp <J7]r\;> , N even

ai = (6.30)

2 .2
xp<jm),Nodd
N
wherei=..., —1,0,1,....

It is easy to check that a; = a;,y for all i and therefore, NV is at least a multiple of the
code period. Calculation of periodic ACF will in passing eventually clarify the issue of a
period. For the code of even length non-normalized periodic ACF:

N-1 . 2\ N-1 o~
. jmm J2mim
Ryon) = 3o, =eso (L) S exn (257

i=0
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When m = 0modA the last sum equals N, while the coefficient in front of it turns into 1.
For any other m exp (j27im/N) depends on i, and the sum above is a sum of the roots of
unity of some degree, or, equivalently, a geometric series with the common ratio
exp (j2mm/N). Summation of the series gives:

. 2 .
Jjmm 1 — exp(j2mm)
R = —
p(m) eXp( N >lexp(j27rm/N)

The denominator of the last fraction never turns into zero unless m = 0 mod/N, and
therefore R,(m) = 0 at all shifts but multiples of N. Hence, the Chu code defined by the
first row in (6.30) has period N and perfect periodic ACF. The solution for an odd N is
carried out similarly (Problem 6.29).

Despite Chu codes making a rather convincing academic example of PSK sequences
with perfect periodic ACF, their practical feasibility is pretty doubtful, since the size of
the phase alphabet grows linearly with length and distances between adjacent phases
becomes very small. Because of that excessive demands arise towards the precision of
forming code symbols, the fineness of representing a phase, susceptibility to environ-
mental conditions, etc.

The same shortcomings are characteristic (to a slightly lower extent, though) of the
second popular family of polyphase sequences: Frank codes. They also realize step-
approximation of the linear frequency modulation, but much more roughly, and exist
only for lengths that are squares of integers N = h*> =4,9,16,25,36,49,.... Their

generation rule is:
il
ai:exp<j;l{;J),i:...,—l,o,l,... (6.31)

where, as usual, | x| stands for rounding non-negative x towards zero.

Proof of perfection of periodic correlation properties of Frank codes differs from that
above only in minor details and is left for Problem 6.30. As is seen from a comparison of
(6.31) and (6.30) the phase step of Frank codes is reduced v/N times, so the alphabet size
grows with NV markedly slower.

Example 6.11.3. Take N=4= h=2. Then with reduction phases to the interval
[0,2m) 2% | 1| = 7i|}| =0,0,0,7,i=0,1,2,3, and Frank code +1,+1,+1,—1 is a unique
binary code with perfect ACF.

Example 6.11.4. If N=16,h=4 and the phase alphabet consists of 4 symbols
{£1, £/}, and hence the Frank code of this length exploits QPSK. Since %w
=74 =0,0,0,00,%,m%,0,70,70, %,7,%5,i=0,1,...,15, the code is +1,+1,
+1,+1,+1,+j, -1, —j,+1,-1,+1,—-1,+1,—j, —1, +j. Perfection of its periodic ACF may be
tested by a direct computation.
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Finishing with polyphase codes, note once more that they are not as attractive
technologically as binary antipodal ones. Do codes exist which do not yield to the
binary ones in implementation simplicity, but—unlike them—possess perfect periodic
ACF? Answering this question is the subject of the next section.

6.11.3 Ternary sequences

Consider sequences whose elements ¢; may assume in addition to binary values +1 also
zero value. In other words, the alphabet is now ternary {—1,0, 1}, which technically
means combining BPSK with pauses, i.e. time intervals where chips are missing. Clearly,
an extension of the binary alphabet {£1} into the ternary one {—1,0,1} does not
seriously complicate either the generation or processing circuitry, but, as is shown
below, opens the way to obtaining sequences with perfect periodic correlation proper-
ties. Remember that one of the main reasons for an interest in spread spectrum in time
measuring and resolution is a desire to achieve high performance operating at low peak
power, i.e. with signal energy spanning a large time interval. Quite a natural measure of
efficiency of energy time-spreading is the peak-factor v (see Section 2.7.1), i.e. the ratio
between peak and time-averaged power. For any PSK, in particular binary, sequence
signal energy is uniformly spread over the period so that peak and average powers are
the same and v = 1. Inserting N, pauses on the sequence period N, as occurs with the
ternary alphabet, will make the energy spreading less uniform and increase the peak-
factor as v = N/(N — N,). Hence, our interest is to design ternary sequences possessing
not only perfect periodic ACF, but also small number of zeros N, on the period, i.e.
peak-factor not much higher than one. Without this constraint the problem would prove
degenerated and have a trivial solution: code with only one non-zero symbol on the
period N, corresponding to a single chip repeated with period NA, certainly has perfect
periodic ACF.

A number of rules to generate ternary sequences with the properties just stated are
now known. The most powerful of them produces sequences with lengths and values of
peak-factor obeying the following equations:

n_ n_ 1
N=L—" , -1 <1 (6.32)

qn _ qn—l q— 1

where ¢ = p" is a natural power of a prime p and n is odd. Sequences of this sort exist for
any combinations of ¢, n within stipulated limitations, and therefore, a peak-factor as
close to 1 as is wished is achievable by just taking ¢ large enough.

The constructions of the ternary sequences meeting (6.32) are based on some fine
features of Galois fields. The simplest of them and at the same time covering the
majority of lengths indicated by (6.32) corresponds to the case of odd p
(g =p",p > 2)[40,41]. In order to present the idea in the most transparent form, let
us give a detailed description of the algorithm only for the case ¢ = p, i.e. w = 1. The
easiest way to do it involves p-ary m-sequences.

Letd,i=..., —1,0,1,..., be a p-ary m-sequence, where p is an odd prime. Each of
its elements belongs to a prime field GF(p). Let us transform this sequence into a ternary
one, mapping its zero elements into a real zero and non-zero elements into their binary



182 Spread Spectrum and CDMA

o TY
———> n I > (d;) or 0 »@—ai
d

|
e

Figure 6.19 Generator of a ternary sequence (6.33)

characters. After this let us change the signs of all elements at the odd positions. The
algorithm thus described is formally given by the equation:

—1)"y(dy), d; # 0
ai — ( ) 7/)( l)7 # (633)
0,di=0
where i=...,—1,0,1,.... Figure 6.19 shows the structure implementing this rule and

including the m-sequence generator unit, which maps m-sequence elements into char-
acters or zeros, and the multiplier, providing alternation of polarities.

To compute the peak-factor of a ternary sequence (6.33) it is enough to recollect that
the period of m-sequence is L = p" — 1, and the balance property asserts that on this
period there are Ly = p"~! — 1 zero symbols. All of them but no others produce zeros in
the ternary sequence; therefore, on the periodical segment of L elements of a ternary
sequence exactly Ly elements are zeros and the peak-factor:

L pl‘l _ 1 p

= = <
YTLoL T T

which coincides with what (6.32) tells us at ¢ = p. To prove that a sequence (6.33) has

the period obeying (6.32) and perfect periodic ACF, one more pseudorandom property

of m-sequences is exploited, proof of which can be found in [42]. To formulate it denote:
L pr—1

p—1 p—1

and consider all pairs (d;, d;_,,) of elements of p-ary m-sequence separated by m positions
if i runs over one period (i =0, 1,...,L — 1). Then (pair property) if m is not a multiple
of h (m # Ih, [ being integer), among pairs (d;, d;_,,) the pair (0, 0) occurs p"~> — 1 times
and any other pair (x, y) of fixed x, y € GF(p) occurs p"~2 times. Otherwise, if m = [h, in
the pairs (d;, d;_,,) the second element is strictly determined by the first: d;_,, = o/d;,
where « is, as usual, a primitive element of the field GF(p).

With understanding that a ‘genuine’ (i.e. unknown so far) period N of a ternary
sequence (6.33) is some divisor of the original m-sequence period L, let us calculate non-
normalized periodic ACF of the ternary sequence over the interval L, containing L/N
periods:
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NL—I
= Zzo:aiai—m =\~ m Z 1/’ l m (634)
=l

d #0
‘i—m%o

where terms in the last sum, for which d;d;_,, = 0 resulting in zero contribution, are
discarded. Consider first the case when shift m is not a multiple of h(m # lh). Then
according to the pair property among all pairs (d;, d;_,,) in (6.34), any pair (x, y) of non-
zero fixed x,y € GF(p) occurs exactly p"~2 times. This allows computing (6.34) in the
following way:
N o=lpd
Ry(m) = ) " 2N Z
x=1 y=I
p 1 p—1
_ m n—2 Zw Z (y) = 07}”}’1 7é lh (635)
x=1 y:]
due to the character property (6.21). Now turn to the case of shifts divisible by &
(m = Ih). According to the pair property only pairs (d;, di_,) = (x, &/x), x € GF(p) enter
the sum in (6.34). But due to the balance property each period of a p-ary m-sequence
contains exactly p"~! fixed non-zero elements of GF(p). Therefore, making use of the
multiplicative property of characters (6.20):

Ry(1h) = (1) Zw = ()" (e T3 we)
and
(Zh) ( )/1+1 n— l(p )

since ¢(x?) = 1 for any non-zero x € GF(p) and (a/) = (—1)' by definition (6.18).
n 1
p— 11
odd integers and consequently is odd itself. By that /(2 + 1) is even independently of
land R,(Ih) = p"'(p — 1)% As is seen, R,(/h) is the same for any integer /, while from
(6.35) R,(m) = 0 whenever m # [h. This shows that the R,(m) as a function of m repeats
itself with period /4, and hence, the true period of a ternary sequence is
N=h= [ﬁ = 1;”:11 in accordance with the prediction of (6.32). We thus arrive at the
final result for the periodic ACF, meaning its perfection:

R, (m) "' m = 0modN
m) =
P 0,m # 0modN

Because n is odd, 1 = =p" 24+ p" 3 4+...+1is the sum of an odd number of

. n_
with N = 2=,
p—1

Example 6.11.5. Set p=3,n=3 which means N =26/2=13. To construct a ternary
sequence of this period use the ternary m-sequence of Example 6.6.2: 1,0, 0, 2, 0, 2, 1, 2,
2,1,0,2,2,2,0,0,1,0,1,2,1,1,2,0, 1, 1, .... There are only two non-zero elements in
GF(3), of which only 2 is primitive. It is clear that /(1) = 1, (2) = —1 and all non-zero elements
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of the m-sequence should be replaced as 1 — +1,2 — —1, zeros being mapped onto real zero.
This produces the ternary sequence +1, 0, 0,-1,0,—-1,+1,—-1,-1,+1,0, — 1, —1, — 1,0,
0, +1,0,+1,-1,4+1, +1,—-1,0,+1,+1,... of period 26. Changing the signs of the elements
with odd numbers (starting with zero) gives the final ternary sequence +1, 0, 0,+1, 0,+1,+1,
+1,-1,-1,0,+1,-1,+1,0,0,+1,0,+1,+1,+1,—-1,—1,0,+1,—1,..., having period N =13
and peak-factor v = 13/9 ~ 1.445. Perfection of its periodic ACF may be verified by a direct
computation.

One may eliminate alternation of signs of odd-numbered elements in rule (6.33) and in
the generator of Figure 6.19 using instead of m-sequences some special linear sequences
of the smaller period. For that coefficients f; in the recurrence (6.13) and feedback of the
LFSR generator should belong to an appropriate non-primitive irreducible polynomial
of degree n. The theory behind it may be found in [41]. Examples of such polynomials of
the third degree allowing removal of alternating signs in (6.33) are given in Table 6.5 for
p < 31. The last two columns contain non-maximal period L of the linear sequence
generated by LFSR and period N of the final ternary sequence. One more advantage of
these polynomials is that the negative of at least one of their coefficients is 1, simplifying
multiplication down to just connection to the adder.

Example 6.11.6. Form the ternary sequence corresponding to p =3, n =3 starting with
polynomial x3 +2x 42 of Table 6.5. The recurrence (6.13) then takes the form
d; = di_» + di_3, generating with initial loading dy = 1, d; = db = 0 the linear sequence over
GF(3)1,0,0,1,0,1,1,1,2,2,0, 1, 2 of period L = 13. After mapping its non-zero elements
onto their characters and zeros onto a real zero, the ternary sequence of period N =13 is
formed identical to that of the previous example.

The extension of the construction above to the case g=p",p>2,w>1 is
rather immediate and rule (6.32) preserves its validity. The only difference is that an
m-sequence {d;} in it is now g-ary, i.e. with elements belonging to an extension (as
opposed to prime) finite field GF(g). The arithmetic of extension fields is a bit trickier
than just modulo ¢ operations, and we do not want to dwell on those details here. The
reader may consult [40,41].

Table 6.5 Non-primitive polynomials over prime fields

P Sx) L N
3 X 4+2x+2 13 13
5 X +4xr+4 31 31
7 X 4+6x+5 171 57
11 X+ 10x+7 665 133
13 X+ 12x+9 1098 183
17 X3+ 16x+15 2456 307
19 X+ 18x+ 15 3429 381
23 X4+ 22x+19 6083 553
29 X3 +28x+28 1742 871

31 X3 +30x + 22 14895 993
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Table 6.6 Parameters of ternary sequences with perfect periodic ACF

N

p n q v N P n q v
13 3 3 3 1.444 292 =4 x 73 2 3 8 1.141
21 2 3 4 1.312 307 17 3 17 1.062
31 5 3 5 1.240 341 2 5 4 1.332
52=4x13 3 3 3 1.444 364 =4 x 91 3 3 9 1.123
57 7 3 7 1.163 381 19 3 19 1.055
73 2 3 8 1.141 532 =4x133 11 3 11 1.099
84 =4 x 21 2 3 4 1.312 553 23 3 23 1.045
91 3 3 9 1.123 651 5 3 25 1.042
121 3 5 3 1.494 732 =4 x 183 13 3 13 1.083
124 =4 x 31 5 3 5 1.240 757 3 3 27 1.038
133 11 3 11 1.099 781 5 5 5 1.250
183 13 3 13 1.083 871 29 3 29 1.036
228 =4 x 57 7 3 7 1.163 993 31 3 31 1.033
273 2 3 16 1.066 1057 3 32 1.032

In contrast to what has been presented, construction of ternary sequences for ¢ = 2",
and proving the perfection of their periodic ACF, involves much more sophisticated
mathematical concepts, such as quadrics in finite fields [43].

If any of the considered ternary sequences is multiplied symbol-wise with a unique
binary sequence 1, 1, 1, —1 having perfect periodic ACF, the resulting ternary sequence
will have quadrupled length with no effect on the peak factor or ACF perfection. In
the same way, a symbol-wise product of two perfect ACF ternary sequences of co-prime
lengths N;, N, has again perfect ACF, length N = NN, and peak-factor v = vu»,
where v; stands for the peak-factor of the ith sequence, i = 1, 2.

Table 6.6 summarizes the lengths and values of the peak-factor of sequences gener-
ated as described along with parameters ¢, p, n for the range N < 1057. The rows where
lengths are presented as products correspond to symbol-wise products of initial ternary
sequences with the binary sequence 1, 1, 1, —1. In this case parameters p, n, ¢ char-
acterize the initial ternary sequence. As is seen, very small to negligible values of v are
characteristic of many of the listed codes, giving the designer rather solid alternatives to
the best binary sequences, wherever perfect periodic ACF is desirable.

6.12 Suppression of sidelobes along the delay axis

Suppose that the designer is not inclined to abandon binary {41} sequences and at the
same time is dissatisfied with the achievable level (p, max > 1/N) of their periodic ACF
sidelobes. In such a situation an effective way to settle these contradictory trends is to
‘imitate’ the perfect periodic ACF by way of rejecting matched filtering in favour of a
special mismatched processing, which suppresses sidelobes all over the signal period.
Very close ideas underlie the reduction or suppression of aperiodic sidelobes [39,44,45]
and combating intersymbol interference with the aid of zero-forcing equalizers [2,5,7],
but in the most transparent form they are visible when applied to periodic signals
[39,46.,47].
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6.12.1 Sidelobe suppression filter

Consider some sequence ..., 1,d;, dii1,-.. of period N, which manipulates chips of
duration A and a finite impulse response (FIR) filter running the summation of N signal
replicas delayed by iA and weighted by coefficients b;,i =0,1,..., N — 1 as shown in
Figure 6.20. In principle, what is presented below may be accomplished for sequences of
arbitrary alphabet; however, it seems reasonable to restrict ourselves to only the binary
{z1} alphabet, since beyond this constraint there exist many sequences with perfect
periodic ACF, depriving the sidelobe suppression task of a solid motivation. Accord-
ingly, filter coefficients b;,i =0,1,..., N — 1 are all assumed real.

When fed by a sequence a;,i =...,—1,0,1,... the filter responds by the sequence
¢,i=...,—1,0,1,... whose elements are found as a convolution:

N—1
ci=Y aith, i=...,~1,0,1,. .. (6.36)
=0

With periodic input sequence a; = a;yy,i=...,—1,0,1,... the output will also be
periodic with the same period N: ¢;=c¢jyn,i=...—1,0,1,.... Then N elements
o, C1,-..Cn—1 specify the output sequence exhaustively, and (6.36) becomes a cyclic
convolution where subtraction in the index is fulfilled modulo N.

Let us impose on the filter a requirement:

0 #0, c;=0,i=12,...,N—1 (6.37)

meaning physically that the filter output signal has non-zero mainlobes repeated with
the period NA, while all the sidelobes between them are zero. This filter, the sidelobe
suppression filter (SLSF), imitates by its response the perfect periodic ACF. Since for a
binary code perfect ACF is not achievable (with a single trivial exception), the SLSF is a
mismatched filter, and therefore yields in SNR to the matched filter.

The fastest way to come to an explicit expression for the filter coefficients is to use
discrete Fourier transform (DFT). A sequence ¢;, i =0,1,..., N — 1 and its DFT spec-
trum ai, k=0,1,..., N — 1 are related to each other by the direct and inverse DFT:

N-1 .
2nik
ap = a,exp(—j%),k—o,l, ,N—1
i=0
1 &R 2mik
alzﬁkgodkexp('%),l—o,l, SN —1

----- Cic1r Cip Cig roene

> -

Figure 6.20 FIR filter for a sequence of length N
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Our goal is to get to the discrete delta function (6.37) at the filter output having only one
non-zero element per period. Its spectrum is uniform: ¢ = ¢p,k =0,1,..., N — 1. Then
on the strength of the convolution theorem [1] the spectrum of the sequence (6.36) at the
filter output, ¢x = axby = co,k =0,1,..., N — 1, where the spectrum of the sequence of
the filter coefficients by is nothing but the SLSF transfer function:

b= k=0,1,....N—1 (6.38)

ai

As is seen, the SLSF transfer function is inverse to the signal spectrum, which is why
filters of this sort are often called inverse filters. An inverse filter just transforms an
input spectrum to make it uniform. As the last equation shows, SLSF is physically
realizable for any periodic sequence whose DFT spectrum has no zero components.
Applying the inverse DFT to (6.38) gives an explicit form of SLSF coefficients:

N—

o 1 2mik\ .

—g — =0,1,...,N—1 6.39
k:& < >7l ) ) ) ( )

2

6.12.2 SNR loss calculation

The matched filter coefficients (see Figure 6.20) would be (ignoring immaterial common
factor) mirror-like to the input sequence:® b; = ay_;,i=0,1,...,N — 1 and output
sequence peak A,; = S\ ' a? = N, since the input sequence is binary. For the input
noise having correlation spread wrthrn A and variance o2, the output matched filter
variance 02, = 0> 31 0?3 a%_; = No>. Thus, the power SNR ¢2,, at the

matched filter output:

A? N
2 mf
— 6.40
qu a_mf 0,2 ( )

In a similar manner for the SLSF output sequence peak Ay = ¢y and noise variance:

Due to the Parseval theorem and the time shift property of DFT, the periodic ACF of an
arbitrary sequence u, 1, . . ., uy_1 of period N is linked to the sequence energy spectrum
|L70|2, |ﬁ1|2, e, |L~¢N,1|2 by the inverse DFT:

2mmk
m): E u,—u;:m:N E <1 o >7m:0717...,N—1 (641)
k=0

i=0

© A cyclic shift of coefficients against the case of the aperiodic signal (b; = ay_1_;) serves to make (6.38) more
compact by excluding the linear phase exponent. For a periodic signal this shift means an adequate cyclic shift
of the periodic output signal, and thereby has no effect on its shape or output SNR.
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In particular:

N—1 5 1 N—1 5
Ro(0) =Y luP= 5>l
i=0 k=0

Using this along with (6.38) in the result for the filter output noise variance gives:

and output SLSF power SNR (signal peak at the SLSF output 4y = ¢y):
N-1 -1
G-H-A (YL
ooy A \Z )
Now we may find energy loss of the SLSF versus the matched filter as:

Gy R
=5

= — (6.42)
g 1= laxl

To better comprehend the last result, note that:

N—1 , | N o —
N = 2 a; TN |ak|” = lal
and
P\ —\ !
(veaz) - ()

represent, respectively, the arithmetic and harmonic averages of a sequence energy
spectrum |sz\2,k =0,1,...,N — 1. The harmonic average of any set of non-negative
numbers never exceeds the arithmetic one, and they coincide only if the averaged
numbers are all equal. Thereby the ratio of these entities may serve as some measure
of the range of scattering of the averaged numbers. But in our case this ratio:

is precisely the energy loss of the SLSF. Therefore, SNR loss v is determined by the
non-uniformity of the sequence energy spectrum |Ezk|2, k=0,1,...,N — 1 estimated in
terms of the distinction between its harmonic and arithmetic averages.

The possibility of suppressing all periodic sidelobes offers a new criterion for design-
ing binary sequences, which is alternative to the one of minimizing the maximal sidelobe
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Pp, max- Indeed, what is the point of worrying about the sidelobe level, if all the
sidelobes may be successfully nullified? It is much more natural to minimize the penalty
paid for their elimination—and this penalty is, of course, SNR loss «. Consider first a
binary sequence (hypothetical if N ## 4) whose energy spectrum is uniform: |dk|2= N,
k=0,1,...,N — 1. In the light of (6.41) this means that the sequence has perfect
periodic ACF. It is absolutely predictable that, since there is nothing to suppress, SLSF
in this case should coincide with the matched filter, having no SNR loss. Equation (6.42)
confirms this, giving v =1 or—measured in decibels—y4p = 101g~y = 0dB. Because
binary sequences with perfect periodic ACF do not exist, their sidelobe suppression is
done in exchange for SNR loss (y4g > 0dB), justifying the introduction of the design
criterion y = min.

As in many problems concerning binary sequences (see Section 6.4), a binary globally
optimum sequence of fixed length N with minimum loss v may be found only by an
exhaustive search. This work has been run up to length N = 30 [48]. Certainly, due to
the exponential growth of a computational resource, this search cannot continue far
beyond the above mentioned range. However, many regular rules of generating binary
sequences of lengths as great as one likes and having very small loss v (although their
global optimality is not guaranteed) are now known.

Let us take a special class of binary sequences having two-level periodic ACF, i.e.
constant level R of sidelobes:

R, (m) = N,m = 0modN (6.43)
A= R,m # 0modN '

All minimax binary sequences, among others, are of this type. The energy spectrum of
such a sequence, as (6.41) shows, is the direct DFT of ACF:

N—1 . N—1 .
-2 J2mmk J2rmk
|ak|:§ Rp(m)exp<— N >=N—R+RE exp(— ~ , k=0,1,... . N—1

m=0 m=0

The last sum has already appeared in Section 6.11.2 and, as was proved, equals N if
k = 0 and zero otherwise. Thus:

By N+ (N-1DR, k=0
|ax)*= ( ) (6.44)
N—-R k#0
Substituting this into (6.42) gives:
1 N-1 1+ (N=2)p (6.45)

TENFIN-DR N-R (=pl+N-1)

where p = R/N is the normalized ACF sidelobe.
To come to a SLSF structure, rewrite (6.39) as:

N—1 ~ N
0 ay j2mik .
bi = NE <N>,z—0,1,...,N—l

k=0 a/c
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and substitute (6.44) into this equation:

~ ~ N—1
do j2mik )
~0,1,...,N—1
N+(N-1R N oy 3 Rk:(] e( )]l e

Co

b[:N

The sum in k here produces coefficients of the matched filter, since it may be presented as:

1= it exp (_ 2m(N — i)k)
=0

N L %E N
1 2m(N — i)k |
= [N szexp<']ﬂ(Tl)>] —ay_ii=0,1,...,N—1
k=0

where use is made of the fact that binary sequence elements are real. Since ¢y is an
arbitrary scaling factor, let us choose it equal to N — R. Then:
pdo

14+ (N—-1)p’
The first term here corresponds to the sequence {a;} read from right to left, i.e.
coefficients of the matched filter. Therefore, for the sequences possessing two-valued
ACEF (6.43), SLSF is obtained by a slight modification of the matched filter: subtracting
a constant from all coefficients. Moreover, for binary sequences of this sort coefficients
of SLSF take on only two possible values:

i=0,1,...,N—1 (6.46)

bi=an_; —

pdo
1+ (N—-1)p
where @ is a sequence constant component, i.e. the difference between the numbers of
plus and minus ones over the period @) = N, — N_.

As is known from the previous material, lots of binary sequences exist with ACF
(6.43) where R = —1 (m-sequences, Legendre sequences and other minimax ones with
ACF (6.12)). Evaluating their SLSF loss by (6.45) results in v =2N/(N + 1), i.e. v~ 2
(3dB) for lengths that are of practical interest. It is seen then that the most popular
minimax binary sequences are of no great value in the light of the criterion of SLSF loss:
half of their energy is lost under SLSF processing.

On the other hand, when R is positive and low enough as compared to N
v < 1/(1 — p), i.e. may appear rather small. So-called Singer codes [34,48] are a good
example of such binary sequences. A Singer code exists for any length of the form
N = (¢" — 1)/(g — 1) and has two-valued ACF (6.43) with R = N — 4¢"~2, where ¢ = p"
is a natural power of prime p and n is natural. The most interesting modification of
Singer codes in our context corresponds to ¢ = 3, in which case p = (3”2 — 1)/(3" — 1)
and vy < (3" = 1)/(8-3"2) < 9/8 = 1.125, i.e. vag < 0.51dB. As is seen, these codes,
being processed by SLSF, are rather attractive, since SNR loss accompanying a total
sidelobe suppression for them is small.

+1 -

Example 6.12.1. Let us take a periodic version of the binary Barker code of length N = 5 from
Table 6.1: +1,+1,+1,—1,+1, for which N, = 4, N_ = 1 and constant component g, = 3. Its
periodic ACF, as may be checked by direct evaluation, obeys (6.43) with R =1 (p = 1/5).
Actually, this sequence is a Singer one with ¢ = 4, n = 2. Figure 6.21b shows the ACF (i.e. the
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matched filter response) of the periodic signal modulated by this sequence (Figure 6.21a). As is
seen from (6.46), a matched filter for this sequence is easily transformed into an SLSF by
changing all coefficients +1 to +2/3 and —1 to —4/3, which after appropriate scaling means
changing —1 to —2 with no change of +1 (see Figure 6.22). The SLSF response to the same
signal is constructed in Figure 6.23, where the waveform labels correspond to the points in
Figure 6.22. The filter output has the desired form, i.e. with zero level of sidelobes. Using (6.45),
it is easy to find the energy loss of the SLSF as v = 10/9 = 1.1111... (0.46 dB).

Figure 6.21 Binary signal of length N = 5 and its periodic ACF
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Figure 6.23 SLSF response for the binary sequence of length N =5
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A multitude of even more effective binary codes were found, based on converting
linear recurrent sequences over finite fields to the binary {£1} alphabet, as well as on
Singer codes. All of them possess a similar appealing feature: a simple SLSF structure
whose coefficients take on no more than three different values. Without going into the
details, which are sophisticated enough, and referring the curious reader to [49, 50], note
that among those sequences families are present having asymptotically vanishing SLSF
loss: v4gg — 0dB with N — oo.

6.13 FSK signals with optimal aperiodic ACF

To discuss briefly the issue of designing FSK signals with good correlation properties let
us come back to (5.20), recalling that having a low level of R,(m) is equivalent to
minimizing the number of coincident frequencies in a frequency code Fy, Fy, ..., Fy_1
and its replica shifted by m positions. Certainly, when the number of chips N (i.e. length)
does not exceed the number of frequencies M, it is trivially easy to obtain zero level of
sidelobes p,(m) = 0, m # 0 by using a frequency code whose elements F; are all different.
Practically, however, the case N > M is much more interesting, entailing repetitions
among elements F;,i =0,1,..., N — 1 and, thus, at least one coincidence in the shifted
replicas of the frequency code, i.e. pg max > 1/N.

Since a frequency sequence may be described as an M x N array (Section 5.5),
minimizing p,, max Means inventing an array with minimal possible number of coincident
labels (dots) in the array itself and its replica, which is shifted horizontally by m
positions. One of the topical problems is constructing the so-called radar arrays defined
as M x N arrays having only one labelled entry in every column and p, max = 1/N, 1.e.
the number of abovementioned coincidences within one. The desire to find a radar array
as long as possible is understandable, given M, because it would mean minimizing p, max
under limitations imposed on the frequency resource. Following [51] let us proof a
simplest upper bound on the length of a radar array.

Consider a sequence F, Fy, ..., Fy_1 and note that to have no more than one coin-
cidence all differences between numbers of positions carrying the same frequencies
should be different. Indeed, let F; = Fi,Fy;=F, and i —k =s—t> 0. Then in the
original sequence and its copy shifted by m =i — k = s — ¢ positions at least two coin-
cidences will happen. Denote n; number of symbols (frequencies) among
Fy, F, ..., Fy_1 occurring i times. Then:

> inj=Nand Y ni=M (6.47)

Now count the number of possible differences between numbers of positions carrying
identical frequencies. There are i repetitions of some frequency and hence i(i — 1) such
differences for this very frequency. Since there are n; frequencies repeated i times, the
total number of differences in question is ). i(i — 1)n;, and because among the differ-
ences no repetition is allowed:

> ii=1n <N -1 (6.48)

i



Time measurement, synchronization and time-resolution 193

where the right-hand side gives the maximal number of unequal positive differences
among the numbers {0,1,..., N — 1}. The trinomial i(i — 1) + 3 — 2i = i* — 3i + 3 has
no real roots, and, hence, is positive at any i. Therefore the sum:

Slili=1)+3=2m =Y i(i—Dm+3Y m =2 in; >0

i i

which, being combined with (6.47), (6.48), gives N — 1 +3M — 2N > 0 or:
N <3M -1 (6.49)

In fact this bound is not the tightest one. More accurate bounds are known, e.g. in [52]
the asymptotic result is derived:

S20+%

N
8

MM > 1, (6.50)

lowering the right-hand side of (6.49) by approximately 0.194 M.

Absolutely tight, i.e. really achievable, upper bounds on the length N are now known
up to M = 16. The table given in [52] allows the maximal length N, of a radar array in
this range of M to be expressed as

3IM—2, 2<M<4
IM -3, 5<M<9

Nomax = (6.51)
IM—4, 10<M<13

IM—5, 14<M<16

Example 6.13.1. The frequency code 1, 2, 3,4,5,6,7,8,7,4,3,9,9,5,8,2,6,5,1,4,2,1,3,7,
where the numbers of frequencies in an alphabet containing M =9 frequencies or,
equivalently, the numbers of dotted rows in every column of the array are given, has maximal
possible length N =24. lts radar array property, i.e. possessing only one frequency
coincidence at all non-zero shifts, is verified by a direct test (Problem 6.54).

In addition, a regular rule for constructing radar arrays of length N = 2.5M exists
(see details in [51]) whenever M is even and M/2 is a product of primes having remainder
one of division by 4, i.e. M = 10,26,34,58,....

A sonar array is a further generalization of a radar array, preserving the ‘no more
than one coincidence’ property for arbitrary non-zero combinations of horizontal and
vertical shifts [53]. Physically, this requirement reflects the desire to have a small
correlation of signal replicas detuned in both time and frequency. Considering an
approach to the choice of frequency space for FSK signals (Section 5.5), frequency
shifts turning a current frequency into the adjacent one are more typical of sonar
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than

of radar systems, where the terminology stems from. For instance, a great

number of regular algorithms for constructing Costas arrays [54], i.e. square

(M =

N) sonar arrays or FSK sequences having equal length and number of fre-

quencies, are known.

Problems

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

The frequency of a rectangular pulse drops linearly throughout its duration
T = 10 ps from 110 to 90 MHz. Calculate the processing gain of the signal. What
is the approximate duration of the signal at the matched filter output? Sketch the
ambiguity function and ambiguity diagram.

The frequency of a rectangular pulse drops linearly over the first half of its
duration 7 = 10pus from 110 to 90 MHz and then grows linearly from 90 to
110 MHz over the second half. Calculate the processing gain of the signal. Sketch
the ambiguity function and its low-level and high-level horizontal sections.
Calculate aperiodic and periodic ACF for a binary Barker code of length N = 11.
Try to do it the most economical way.

Take a periodic sequence {a;} of period N and form a new sequence {b;} picking
each dth element of {a;}: b; = ag, where multiplication in the index is modulo N.
Such a transform is called the decimation of {a;} with index d. Prove that if {a;}
has perfect periodic ACF and dis co-prime to N, {b;} also has perfect periodic ACF.
The binary {£1} code of length N = 5 has periodic ACF R,(m) = 1,m # 0mod5.
Values of its aperiodic ACF are R,(1) =0, R,(2) = —1. Find R,(3) and R,(4).
The binary {£1} code of length N =5 has constant component @, = +3 and
R,(4) = —1. Find R,(m) and the rest of the values of R,(m).

Can a binary {£1} code of an odd length N > 5 have R,(5) = —1? Can a binary
code of an even length N > 6 have R,(6) = —1? For an arbitrary binary code
formulate and prove the relation between parities of the three values: length N,
shift m and level of R,(m).

Is it possible for a binary {+1} sequence that R,(m) = 1, R,(m + 1) = 3 for some
m? What about parities of R,(m) and R,(m + 1)?

Is it possible for a binary {1} sequence that R,(2) =2, R,(2) = —1?

Suppose someone has found that each of the PSK sequences of length N = 100 at
his disposal has non-normalized periodic ACF taking on values 12 at some shifts
me {1,2,...,N —1}. Can a code with p, max < 0.05 be present among them?
Construct a matched filter for a BPSK signal manipulated by a sequence
{+ — ++} and show waveforms at its characteristic points, when the filter is
input by aperiodic and periodic versions of the signal.

Construct a matched filter for a BPSK signal manipulated by a sequence
{+ — + + — — —} and show waveforms at its characteristic points when aperiodic
and periodic versions of the signal are applied to its input.

A student has calculated periodic ACF of the binary {+1} sequence of length
N =21 and obtained the following values: R,(m) =09, R,(my)= -3,
R,(m4) = =5, R,(ms) = =7, R,(mg) =7. Can all of these results be correct?
Which (if any) are definitely incorrect?
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6.14.

6.15.
6.16.
6.17.
6.18.
6.19.
6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

Prove the non-existence of minimax binary sequences (R,(m) = 1, m=1,2,...,
N — 1) for lengths N = 17,21,29,33,37,45. (Hint: use the same technique as in
deriving the necessary conditions for perfect ACF of binary sequences.)

Prove that decimation of a minimax binary sequence again produces a minimax
binary sequence whenever the decimation index is co-prime to the period N.
Prove that decimation of any periodic sequence does not change the maximal
periodic sidelobe, whenever the decimation index is co-prime to the period N.
Calculate 3+7)—5(6-7+4)+ 1 in GF(11).

Solve the equation 6x + 7(5+4-2)"' =1 in GF(11).

Prove that GF(4) cannot be built on the basis of modulo 4 operations.

Is the sequence of length L =7 {0100110} a binary m-sequence? What is the
answer if all zeros are replaced by ones and vice versa?

Construct a binary m-sequence of length L =15 with an initial loading
dy=1,d = dy = dy = 0, draw the structure of its generator and compile a table
exhibiting its state changes.

Prove that in one period of a binary m-sequence of memory n the number of series
of successive symbols (01), (10), (11) is 2"~ while the number of series (00) is
smaller by one.

Someone observes an m-sequence knowing its alphabet and memory but not its
coefficients of recurrence (6.13). What is the minimal necessary and sufficient
number of observed symbols to recover the coefficients?

Prove the independence of binary character of a specific choice of primitive element.
Find a primitive element of GF(13). Build a table of logarithms and binary
characters of all non-zero elements of GF(13).

Build the Legendre sequence of length N = 11, calculate its periodic ACF and
compare it with the theoretically predicted one.

Build the Legendre sequence of length N = 13, calculate its periodic ACF and
compare it with the theoretically predicted one.

Find the cyclic shift of the sequence of Problem 6.26 with minimal aperiodic ACF
sidelobe.

Prove the perfection of periodic ACF for Chu codes of odd lengths.

Prove the perfection of periodic ACF for Frank codes. (Hint: use representation
i=ith+ibh, m=mbh+my;, 0<iy,i,m, my <h—1 and summation over iy, i»
in (5.9).)

Does an 8-PSK sequence of length N = 64 with perfect periodic ACF exist? If so,
construct it.

Prove the non-existence of QPSK sequences with perfect periodic ACF for odd
lengths N.

Prove the non-existence of QPSK sequence of length N = 30 with perfect periodic
ACF.

Prove that for a ternary {0, +1} sequence with perfect periodic ACF, the number
of non-zero elements per period is always a square of an integer.

Prove the non-existence of ternary {0,+1} sequences having perfect periodic
PACF and a single zero per period for any odd length.

Construct an SLSF, show the effect of sidelobe suppression and find SNR loss for
a binary sequence {+ + + + +—}.
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6.37. Find the SLSF energy loss for a sequence {+ + — — — + +—}.
6.38. Find the maximal length FSK sequence with alphabet size M = 4 and no more
than one frequency coincidence.

Matlab-based problems

6.39. Using binary codes {+ +—-+++—-+++—-}and {+ —++—-+++———}
demonstrate the destructive role of high sidelobes of ACF in time delay measure-
ment and synchronization (Figure 6.24). Recommended steps:

(a) Form the codes given above and oversample them 10 times to simulate base-
band signals (complex envelopes) with a rectangular chip.

(b) Plot the signals in two separate subplots.

(c) Calculate the ACFs of the signals above and plot them in two separate subplots.

(d) Extend the signals by appending 110 initial and 110 tail zeros to imitate the
stationary regime of a receiver.

(¢) Form the observation vector for each signal, adding to it complex Gaussian
noise having standard deviations of real and imaginary components three
times higher than the signal amplitude.

(f) Calculate the real envelope at the matched filter output for each of the two
signals and fix the time moment of its maximum.
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Figure 6.24 ACEF sidelobes and time-delay measurement accuracy
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(g) Do item (e) several times and plot the superposition of waveforms for the two
signals separately.

(h) Repeat items (e)—(g) 1000 times, display histograms of time estimations for
the two signals and interpret the differences between them.

6.40. Using binary codes {+++ -+ —-+—-+—+}and {+—++—-+++—-——}

S(t)

a*S(t-7)

(1)

demonstrate the destructive role of high sidelobes of ACF in time resolution of
signals with different intensities (Figure 6.25). Recommended steps:

(a) Form a plain bandpass chip with 10—15 periods of carrier frequency per chip
duration and find its ACF.

(b) Find the ACF of the code vectors.

(¢) Find and plot matched filter responses to ‘pure’ signals for the two codes.

(d) Display the delayed and attenuated copies of the matched filter responses.

(e) For each of the two signals display the full matched filter responses to the
superposition of direct and delayed signals.

(f) Varying the delay and attenuation, compare the masking effect of the side-
lobes of the stronger signal on the visibility of the weaker one for the two
codes; explain the results.
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Figure 6.25 ACEF sidelobes and signal time resolution

6.41. Write a program demonstrating the behaviour of the ACF and spectrum of an

LFM pulse with changing deviation. Take three values of deviation
(e.g. W4T = 10,25,40). Compare the exact form of the ACF with the approximation
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6.42.

6.43.

6.44.

6.45.

(6.1). Run the program for rectangular and bell-shaped pulses and explain the
results.

Write a program calculating and plotting the ambiguity function and its horizon-
tal sections (ambiguity diagrams) at different levels for the LFM (see Figure 6.6)
and V-LFM rectangular pulses, whose complex envelopes are:

1% 2
e (™) s
S() =

0, [t| >T)/2

WA\ =T
—j2 —<t<0
ewo(ne0), <o

0, |7 > T)/2.

Take three values of deviation (e.g. W, T = 10,25,40), comparing for each of
them ambiguity functions and diagrams on high and low levels for both
signals.

Write a program to calculate and plot aperiodic and periodic autocorrelation
functions of an arbitrary APSK sequence. Use it to verify the optimality of binary
Barker codes. Calculate the ACF of the ternary sequence {+ + + + +-—
+0+0—++—-00+ —0 — —} and find the maximal level of its sidelobe relative
to the mainlobe. Verify that for binary codes the following properties of periodic
ACEF are true:

N—1
Ry(m) — Ry(1) = 0mod4,Vm,I; > R,(m) = (N, — N_)*
m=0

Write a program for an exhaustive search for the optimal binary code of given
length, minimizing the maximum level of the aperiodic ACF sidelobe. Provide for
measuring execution time and try to optimize the processing speed of the pro-
gram. How does operating time grow when length is incremented by one? What is
the maximal length you have managed to find an optimal code for?

Using Matlab, illustrate time-resolution of three copies of the bandpass periodic
APSK signal manipulated with the ternary code (+++++—+0+0— ++
—00+4 —0 — —) at the matched filter output (Figure 6.26). Take time shifts
between consecutive copies of 2-3 and 5.5-6.5 chip durations A correspondingly.
Recommended steps are:

(a) Form several (3—4) periods of ternary code and oversample them 100 times to
simulate rectangular baseband chips manipulated by the given code: the signal
complex envelope.
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6.46.

6.47.

(b) Form the sum of three overlapped delayed copies of the complex envelope
having remarkably different amplitudes, say in the proportions 1: 4:8.

(¢) When summing copies, be mindful of the proper (consistent with delay) phase
of a copy, specifying the carrier frequency to be 5/A.

(d) Calculate and plot the resulting bandpass signal at the matched filter input.

(e) Filter the resulting complex envelope with a filter matched to one period of the
signal.

(f) Calculate and plot the bandpass filter output.

(g) Run the program for other values of delays and amplitudes, and comment on
the results.
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Figure 6.26 Resolution of three replicas of the signals with perfect periodic ACF

Write a program generating a binary m-sequence specified by a memory n. Generat-
ing m-sequences of various lengths, calculate their PACF (after mapping onto the
{%1} alphabet) and check experimentally their balance and shift-and-add properties.
Check also the series property: each series (run) of / < n fixed consecutive bits occurs
2"~ times during the period except for the all-zero run, which occurs 2"~/ — 1 times.
Testing the binary polynomial of degree n in the LFSR generator may answer the
question of whether it is primitive. If the LFSR does generate an m-sequence of
length N = 2" — 1 then the polynomial is primitive. Write a program performing
such a test and tabulate all primitive polynomials of degrees from 4 to 12. Is
polynomial f(x) = x® + x* + x?> + x + 1 primitive? What sequence is generated by
LFSR with a feedback defined by this polynomial?
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6.48.

6.49.

6.50.

6.51.
6.52.

Write a program to build a Legendre sequence. First find a primitive element of a
prime field GF(p). Then plus ones should be put in the positions whose numbers
are even powers of the primitive element in GF(p) and in position number zero
(the latter may alternatively be assigned to —1, too), while the rest of the elements
should be minus ones. Run the program for lengths N = 11,23, 31,43 and those
of your own choice, checking in each case the PACF of the sequence obtained.
Write a program finding the sequence with minimax aperiodic ACF sidelobes
among one-period segments of a given sequence with promising periodic ACF.
Running this program along with that of Problem 6.48, find the best (in aperiodic
sidelobe level) one-period segments of Legendre sequences having lengths
N =23,29,31,37,43,47,53,59, 61, 67. Have you found anything better in p, max
than the binary Barker code of length N = 13?

Write a program forming and testing periodic ACF of modified m- and Legendre
sequences (if the leftmost element of the latter is 1 take the negative of the
sequence, multiplying all its elements by —1). Verify perfection of periodic ACF
for the modified sequences. Derive modified sequences from the initial ones by
replacing the —1 symbol by:

(a) a real symbol b= —1+ \/FV%IT

(b) a complex symbol b = —exp [jarccos (%—;})} .

Write a program verifying the perfection of periodic ACF of Chu and Frank codes.
Write a program generating ternary sequences of Section 6.11.3 over prime fields
and verifying the perfection of their periodic ACF. An example for the case

p=5n=3 (N =31,v=124)is given in Figure 6.27.

s(1)
=)
(=)

(a)

(b)

i i | i i i
0 10 20 30 40 50 60
/A

Figure 6.27 Rectangular-chip signal modulated by the ternary sequence (a) and its periodic ACF (b)
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6.53. Write a program finding SLSF and calculating its SNR loss for a given binary
sequence. Plot the signal manipulated by this sequence, its periodic ACF and
SLSF response. An example for a binary sequence {—++—— — —+ —
++-—+—-—4+++—-—++——+++++} of length N =27(ypg =0.4dB) is
given in Figure 6.28.

@ 2
b =
© 3

Figure 6.28 Rectangular-chip signal manipulated by a binary sequence (a), its periodic ACF (b)
and SLSF response (c)

6.54. Write a program to calculate aperiodic ACF of a radar array. Run the program to
verify the properties of the FSK code in Example 6.13.1.






7

Spread spectrum signature
ensembles for CDMA
applications

7.1 Data transmission via spread spectrum

It is clear from the discussion of Sections 4.3—4.6 that in a CDMA network each of K
users transmits or receives its individual data employing some user-specific signature,
ensemble of K signatures being carefully designed to provide the best possible compati-
bility. In order to make the kth signature transport the datastream some sort of
modulation is necessary, which—due to the spread spectrum nature of CDMA signa-
tures—is often called spread spectrum modulation. There are two classical versions:
direct sequence (DS) and frequency hopping (FH) modulation. The first is more typical of
modern commercial wireless multiuser applications, and so the second will be con-
sidered below only briefly.

7.1.1 Direct sequence spreading: BPSK data modulation and binary
signatures

The general idea of direct spread spectrum is APSK modulation of the APSK signature
by a datastream. To make the concept easier to grasp, let us start with the simplest case
of BPSK non-spread spectrum data transmission. Let By (7) be the data waveform of the
kth user (Figure 7.1) where positive and negative polarities during one bit interval
Ty correspond to transmitting a bit equal to 0 and 1, respectively. If by =
(eoosbie,—1,D1.0, D115 - . ), bk, i = £1, 1s, as it was in Chapter 4, the kth user bit (or binary
symbol) stream, then By(t) = b ; ==+1,(i— )T <t < iTp. Transmitting Bi(f) by

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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Figure 7.1 Illustration of BPSK data transmission

BPSK just means multiplying it with a CW carrier of frequency f; to come to a sent
modulated signal (see Figure 7.1):

Sk([; bk) = Bk(t) COS(27Tf0t) (7.1)

Therefore, technically a BPSK modulator is just the multiplier shown in Figure 7.2a.
After passing through the channel the signal assumes time delay 7 and initial phase ¢y
as well as attenuation, the latter being ignored as immaterial in our current study. Then
the received useful signal:

Skr(l; bk) = Bk(l — Tk) COS(27Tfol + ¢k> (7.2)

A typical receiver of BPSK data contains timing and carrier phase recovery loops, which
estimate running values of delay 7, and initial phase ¢;. At the moment the issue of
estimation precision may be left aside, and we assume that the receiver knows ‘genuine’
7 and ¢y. If the signal above is corrupted by AWGN, the optimal (ML) procedure (see
Section 2.2) to retrieve the ith transmitted bit is to calculate the correlation of the
observation y(f) = si.(¢; br) + n(¢) with the difference of signals carrying bit contents 0
and 1, respectively, which in the considered case is just 2cos (2nfpt + ¢x). Since only
polarity of the correlation is used for the decision on the received bit, and since the ith

Sampling at iT}, + 7

B, (1) s (£ by) v (t) . b ;
@ @ [
Resetat (i—1)T),+ 7,
cos(2fyt) cos(2afyt + &) }-
(a) (b)

Figure 7.2 BPSK modulator (a) and demodulator (b)
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bit at the channel output occupies time interval ((i — 1)T} + 7%, iT} + 7], the correlation
discussed is:

iTyp+T7k
zp = / (1) cos(2mfor + ¢r) dt
(l‘*l)T;,JrT/(
and the decision l;k’ ;i=0or bAk,,- = 1 is taken depending on the positive or negative sign

of zx. A possible and very popular structure of a demodulator implementing this rule is
given in Figure 7.2b. It contains the correlator realized as a multiplier multiplying the
observation with a locally generated CW reference cos 27fot + ¢x) and an integration-
and-reset unit. At the end of every consecutive bit interval a sample is taken from the
integrator output, a decision on the current bit is made according to its polarity, and the
integrator is zeroed in preparation for operation over the next bit interval.

Consider now the changes that need to be done for transmitting BPSK data with
BPSK DS spreading. Let si(¢) be the kth user signature, i.e. a discrete signal consisting of
chips of duration A, manipulated by some user-specific binary sequence. Let there be N
signature chips per one data bit. Then DS spreading of the BPSK signal just involves
inserting one more multiplication in (7.1)—by a signature s;(f):

sk (23 bre) = s (1) Bi (1) cos(2mfo1) (73)

Since the bandwidths of signals (7.1) and (7.3) are inverse to bit duration 7 = 1/R and
chip duration A = T,/N = 1/RN, respectively, the DS spreading widens the spectrum N
times. This explains one more name: the spreading factor for the time—frequency product
or processing gain WT = N. In practice, multiplications in (7.3) may be fulfilled in an
arbitrary order, e.g. as Figures 7.3 (spreading by a binary m-sequence of length
N =7,T, = NA) and 7.5a show, the bit stream By(f) may first be multiplied with a
signature si(¢) to further modulate the CW carrier by the product s;(1)B(f). We may say
in this case that the bit stream first modulates the baseband signature and then the result
BPSK-modulates the carrier.

After passing the channel and acquiring delay 7, and phase ¢y, the signal takes the
form:

Sk,,(l; bk) = Sk(l — Tk)Bk(l - Tk) COS(27Tfol + gi)k) (74)

Assuming again a perfect knowledge of parameters 7%, ¢, the receiver for retrieving the
current (ith) bit just needs to distinguish between the signal s;(t — 1) cos Qnfot + o)
and its antipodal copy. To perform it optimally a correlation:

iTy+71
Z) = y(t)sk(t — Tk) COS(27(f0l + gf)k) d¢
(i=1) T+
of the observed waveform y(f) with a local reference bandpass signature replica

sk(t — 1) cos 2nfot + ¢) may be found and its polarity used for the decision. Interest-
ingly, however, the same optimal operation may be realized in two stages, first removing
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Figure 7.3 DS spreading of BPSK data with binary signature

the spreading and then demodulating the data as though they had been transmitted
directly with no spreading. Let the observation y(r) be multiplied by the local replica
si(t — 1) of the baseband signature synchronized accurately with the arriving signal.
The useful component (7.4) of the observation after this operation changes as:

S (153 )i (1 = 1) = s3.(1 — i) Bi (1 — 7ic) cos(2nfot + )
= By (t — 1) cos(2nfot + @)

where the binary nature of the signature (sx(f) = %1) is used, on the strength of which
s,%(t) = 1. As is seen, after this step the received signal has no more features of spread
spectrum, coinciding entirely with the plain signal (7.2) BPSK-modulated by the data-
stream. Due to this, multiplying of the observation by a signature replica is called
despreading. Figure 7.4 shows the procedure of transforming a DS-spread signal into
a conventional BPSK data-modulated signal.

Since a despread signal is a conventional BPSK data-modulated CW carrier, further
data recovery is fulfilled by an ordinary BPSK demodulator, e.g. by the one of Figure
7.2b. The entire spreading—despreading cycle is illustrated in Figure 7.5.

To support the discussion in terms of the frequency domain, consider Figure 7.6,
which shows the power spectra densities Sy(f), Sps(f) of the initial datastream By(r) and
its spread version s;(7)By(?), respectively. For a sequence B(¢) of bit-pulses of duration
T, whose polarities are random and independent, the power spectrum
Sp(f) = Tysinc*(nfT}). Treating the spread datastream again as a random sequence of
pulses with independent polarities—this time of duration A—leads to a power spectrum
of the same shape, but occupying N times wider bandwidth: Sp(f) =
Asinc*(nfA) = (T;,/N)sincz(wﬂ" »/N). Transmitting a wide-spectrum signal on the air
utilizes all the benefits of spread spectrum (see Chapters 3 and 4) but at the receiving
end despreading returns the spectrum into its original bandwidth, converting the signal
into narrowband and allowing use of the simplest technologies of data demodulation.
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Figure 7.5 Spreading (a) and dispreading (b) a BPSK data-modulated signal

7
Figure 7.6 Power spectra of original and spread datastreams

7.1.2 DS spreading: general case

The idea of direct spreading considered above for the BPSK data transmission and a
binary signature may be readily generalized to comprise a much wider range of data
modulation modes and signatures. Let Bi(¢) denote a complex waveform corresponding
to a datastream by of the kth user transmitted in some digital data modulation format
(ASK, M-ary PSK, QAM etc.). With M-ary digital data transmission By (¢) consists of
contiguous rectangles having duration 7 = (log M)T, and manipulated by complex
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symbols belonging to the specific M-ary modulation alphabet. For example, in the case
of 8-PSK, rectangles of duration 7' = 37} are manipulated by complex amplitudes from
the alphabet {exp (jin/4):/ =0, 1,...,7} shown in Figure 2.6c; if 16-QAM is preferred,
then the rectangles have duration 7' = 47}, their complex amplitudes taking the values
defined by Figure 2.6b and so on. In the case of an ordinary (non-spread) M-ary
modulation the transmitted signal carrying a datastream by (it is convenient to
assume now that components bi; of by are M-ary complex symbols: B(1) =
br.i,(i— DT <t <iT):

sk (t;br) = Re[ By (1) exp(j2nfo1)]
The received signal:
Ser(t;bg) = Re{Bk(l — 1) explj(2nfor + &x)] }

has a complex envelope:

Skr(l; bk) = Bk(l — Tk) exp(/qﬁk) (7.5)

The transmitted ith data symbol by ; is just the complex amplitude of a CW carrier,
which is constant within the interval ((i — 1)T,iT]. Consequently, to recover this
symbol the receiver should decide between M replicas of the rectangular pulse existing
at (i — )T + 7%, iT + 7] and having different competitive values of complex amplitude.
To fulfil this, the observed complex envelope Y (7) retrieved from the noisy observation
y(#) should be correlated with exp (jor), resulting in:

iTH7;

Zp = / Y (1) exp(—joy) dt
(i=1)T+7
used (after normalization to the reference symbol energy) to get the necessary estimate
bk’j of bk) i

The demodulator of Figure 7.7, where the double circle symbolizes complex
multiplication, implements the procedure. This scheme just generalizes the correlator

Sampling at iT + 7,

RelY (1) exp(—jo )] /

| Decision

exp(—jé )
<— )
> unit

I— J

Im[Y (1) exp(—je )]

\lj— Reset at (i— 1)T+7,

Figure 7.7 M-ary demodulator
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structure of Figure 7.2b to the case of arbitrary digital data modulation. The observed
complex envelope Y(7) is first multiplied by exp (—j¢) to compensate for the channel
phase shift ¢r. The useful component (7.5) of Y() after this operation becomes
Bi(t—7). Any complex waveform is equivalent to two real ones (real and imaginary
parts), so the multiplier output in Figure 7.7 is treated in terms of real and imaginary
parts of the product Y(¢)exp (—j¢x). The useful components of them are the real and
imaginary parts of B(r — 7;) and further integration, as always, serves to clear them off
noise. Samples at the integrators’ outputs at the moment i7 + 7 are estimations of the
real and imaginary parts of the received M-ary data symbol used by a decision unit to
give out the demodulated symbol.

Consider now how direct spreading may be incorporated into this modulation—
demodulation scheme. Let Si(r) be the complex envelope of the kth user CDMA
signature. Its alphabet may be chosen independently of the data modulation alphabet,
e.g. may be binary, quaternary, APSK etc. Then a direct spreading means multiplication
of the data modulation By(f) and signature Si(r) waveforms to use their product
Si(t)B(?) as a complex envelope of a transmitted signal:

si(t;br) = Re[Sk(t) By (t) exp(j2nfot)] (7.6)
The received useful signal is a delayed and phase-shifted copy of (7.6):
str(13b5) = Re{Si(1 — 1) Bi (1 — ) explj2nfot + )]}
with complex envelope:

Sk,‘([; bk) = Sk(l — T/C)Bk(l — Tk) exp(j¢k) (7.7)

The constancy of B(f — 7¢) at the interval ((i — 1)T + 7%, 7] means again that to retrieve
the ith symbol the receiver should decide between M competitive replicas of the same
signature Si(t — 7) exp (j¢) multiplied by different data symbols by ;. Correlation:

iT+7
P / Y(1)S: (1 — 1) exp(—jcy) di (7.8)
(l’*l)T“er

then serves (after proper normalization) to get the necessary estimate of bx ; and may
again be treated as a couple of samples at the integrator outputs of the demodulator in
Figure 7.7, provided the reference signal in the complex multiplier is changed from
exp (—jox) to S',’g(l — 7%)exp (—j¢r). After multiplying with such a reference the useful
component of the observed complex envelope:

Str (£ 01) Sy (1 — 7) exp(—jopi) = USk (t =) ’ By(1— Tk)eXp(/(ZSk)} exp(—jéx)

at the ith data syr121b01 interval becomes just one of M possible replicas of the baseband
signal |S/((l — Tk)| multlphed by different complex coefficients by ;. If signature chips
Z—Tk)‘ =1 and, as the
previous equatlon shows, multlpllcatlon by Si(t — k) converts the received signal




210 Spread Spectrum and CDMA

complex envelope into the one characteristic of an ordinary (non-spread) M-ary data
modulation, i.e. performs the despreading. Thanks to this the receiver may again be
thought of as a two-stage one: fulfilling first despreading and then a conventional M-ary
demodulation, using, e.g., the scheme of Figure 7.7.

Let us dwell now on implementing complex multiplication and extracting the complex
envelope Y(f) from a truly observed real waveform y(7). Recalling the basic rules of
complex arithmetic:

Re(xy) = Re(x)Re(y) — Im(x)Im(y), Im(xy) = Re(x)Im(y) + Im(x)Re(y)

the multiplier of two complex entities x and y contains four conventional multipliers and
two adders (Figure 7.8). Input complex operands x, y specified by their real and
imaginary parts produce two outcomes, being the real and imaginary parts of the
product xy.

Obtaining the observed complex envelope is based on the definition of Y(7):
y(t) = Re[ Y (¢) exp (j2nfy1)]. Applying the complex multiplication rule above and the
Euler formula we have y(r) = [ReY(r)]cos 2nfyt) — [ImY(¢)] sin (27fyr). Multiplying
both parts of this equation by 2 cos 27fyt) and —2 sin (2nfy¢), along with using trigono-
metric identities, leads to:

2y(t) cos(2mfot) = ReY (1) + [Re Y (2)] cos(4nfot) — [ImY (£)] sin(dnfy?)
—2y(t) sin(2zfor) = ImY (¢) — [ImY (¢)] cos(4nfyt) — [ReY (¢)]sin(4nfor)  (7.9)

The first terms of the right-hand sides of equations (7.9) are baseband waveforms (since
the complex envelope is a modulation law, i.e. baseband), while the rest are bandpass
waveforms, having a central frequency 2fy. The bandwidth of the modulation law is
smaller than fy (see Figure 7.9a), therefore the lowpass filters may easily filter out high-
frequency components in (7.9), preserving only the real and imaginary parts of a desired
complex envelope Y(¢). This principle of restoring the complex envelope from the real
observation y(¢) is realized in the scheme shown in Figure 7.9b.

To conclude this discussion, Figure 7.10 illustrates the operations run by the trans-
mitting and receiving sides in a generic DS spread spectrum system. The modulator
(Figure 7.10a) implements (7.6) using only the real part of the complex product. In the
demodulator (Figure 7.10b) the observed complex envelope retrieved according to the
scheme of Figure 7.9b is first despread by multiplication with the reference SZ([ — T%)

Re(x)
x ﬂ 7’@
® Y ReO)
_ L
Im(x) Cx/

Figure 7.8 Complex multiplication

<
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Figure 7.10 Modulation (a) and demodulation (b) in a generic DS spreading

and is then input to a conventional M-ary demodulator (see Figure 7.7) to produce
decisions on the received symbols.

Note in passing that the method of spreading—despreading just described is not unique
and a variety of concrete circuitry solutions exists to implement those operations. For
instance, multiplying complex envelopes may be done indirectly in the course of hetero-
dyning. Specifically, if u;(#) = U;(¢) cos [27nfit + ~i(¢)],i = 1,2 are two bandpass signals
with carrier frequencies f; and complex envelopes Ui(r) = U;(r) exp [j7:(1)], their product:

(1 (6) = 5 U1 () U (0) cos2n(f — )+ (1)~ 72(0)]
+ % Ui (1) Us(1) cos2n(fi + f2)t + 71 (2) + 72(1)]

The two terms here are bandpass signals of carrier frequencies f; — f> and f] + f>. If the
lower carrier frequency f; — f> exceeds the bandwidth of the product Ul(t)Uﬁ(t), then
after filtering out the higher-frequency term the remaining lower-frequency bandpass
signal will have complex envelope Ul(t)Uz*(t), i.e. exactly the product necessary in
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despreading. In the same way, the higher-frequency term is a bandpass signal, whose
complex envelope is a similar product without conjugation.

DS spreading is used in all 2G and 3G CDMA standards: IS-95 (cdmaOne), UMTS
and cdma2000. Various combinations of data modulation and signature alphabets are
involved there, which will be discussed in more detail in Section 11.3.

7.1.3 Frequency hopping spreading

In FH spreading FSK signatures are used and data modulation is also typically FSK.
Two sorts of FH are traditionally distinguished—fast and slow—the relation between
the chip A and data symbol T durations being the criterion of this classification. For a
fast FH A = T/, where [ > 1 is natural, while for a slow FH A = [T with a natural
[ > 1. In other words, for fast FH there are several frequency hops per data symbol,
while with slow FH several data symbols may be transmitted during one frequency hop
of a signature. To better imagine how it all works let us turn to an example.

Example 7.1.1. Let us take the FSK signature of Example 5.5.1 and use it for fast FH spreading
in combination with a binary FSK data modulation. In this case the number of different
frequencies in a signature M = 5, signature length N = 8 and one data symbol transmits one
bit, so that T = T,. Suppose that in a fast FH scheme | = N = 8, i.e. there are 8 frequency hops
per data bit. Then the whole sequence of FSK chips shown in Figure 5.3 is transmitted during
one bit. If the data bit is zero, this frequency pattern is transmitted on the carrier frequency f,
while for the bit equal to one the carrier frequency jumps to f;. The difference between f; and f,
should certainly be no smaller than the bandwidth occupied by the signature, i.e. MF. The
transmitted frequency pattern corresponding to data bit stream 01011 is shown in Figure 7.11a.

Data bits: 0 1 b0 1 ool i
f ‘ ‘ i
h - -
1 1 MF
(2) p
07777 i v i
1V F 1
N
- > t
T=T,=NA
(b)
fot; - iR R
1
t
fi+MF
(©)
fi

Figure 7.11 Fast FH spreading—despreading
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As may be seen, the spectrum of a single data bit whose width before spreading was about 1/T,,
is spread to span a bandwidth around MF ~ M/A = MN/T,, i.e. MNtimes wider (see Section 5.6).
At the receiving end despreading consists in down-converting the observed waveform to
the intermediate frequency f;. For that the reference waveform of the carrier fy — f; is used,
modulated according to a signature FSK pattern, properly delayed in time (Figure 7.11b). As a
result a despread signal is an ordinary narrowband FSK data-modulated waveform, where the
zero data bit is transmitted by lower frequency than the bit one (Figure 7.11c). The spectrum of
an isolated data symbol is now returned to the bandwidth 1/T, and a conventional binary FSK
demodulator may be used to recover the received data.

Let us illustrate in the next example how to run slow FH spreading.

Example 7.1.2. Take the same signature in combination with, again, binary FSK data
modulation and set equality between chip and symbol durations: T = T, = A. This means
that the current frequency remains constant over all the data bit duration and frequency hops
happen only from one bit to the next. The frequency pattern of the signature is stretched in time
and its length now covers N data bits (Figure 7.12a). Suppose that during a data bit number
isignature frequency equals F;. Then the transmitted frequency becomes f, + F; for a zero data

Databits: 0 | 0 1 VR 0 11
w ! L o
a R I | | |
wr ! |
i '
= :
h
(b)
fo e
| | z
() ]
Jo=fi 1
fi+ MF — —
(d '
i

Figure 7.12 Slow FH spreading—despreading
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bit and f; + F; for a data bit equal to one. Figure 7.12b shows this for the bit stream 00101101.
The principal difference between fast and slow FH is now seen: the latter does not spread the
spectrum of an individual data symbol, widening just the total bandwidth occupied by the
system. It looks like a system that merely switches from one operational frequency to another
from time to time but within a fixed group of data symbols no switching happens. At the
receiving end down-conversion to an intermediate frequency f; is accomplished with the aid
of a reference signal repeating the signature frequency pattern (with an appropriate delay) on
the carrier fy — f; (Figure 7.12c). This returns the waveform to the bandwidth inherent to a plain
(non-frequency-hopping) FSK data modulation (Figure 7.12d), so that an ordinary FSK
demodulator may restore the transmitted data (Figure 7.12c).

The techniques illustrated in the examples above for binary data transmission are
ecasily extended to a general FSK data modulation (see Problems 7.5-7.7).

FH spreading has some features that make it especially attractive for military applica-
tions, in particular in various antagonistic scenarios of games against jamming systems
[3,6]. At the same time, its commercial use had not until recently been significant, at least
as regards fast FH. However, the advent of Bluetooth technology [55] indicates that this
kind of spread spectrum may also possess good commercial prospects.

7.2 Designing signature ensembles for synchronous DS CDMA
7.2.1 Problem formulation

Consider a K-user DS CDMA system where all user datastreams and all signatures are
strictly synchronized, i.e. have zero mutual time shifts, at the receiver input. As was
pointed out in Section 4.4, a classical example of such a system is the downlink of
CDMA mobile radio, where the base station controls entirely the timing of signals
addressed to all users within the cell. Certainly, the group signal arrives at the mobile
receiver preserving the initial synchronism between the signals sent to different individ-
ual users. In our current analysis we will operate with an idealized channel model, in
which multipath delay spread 7.y is smaller than the chip period A of users’ signatures,
or an efficient equalizing is used, eliminating all the multipath components whose delays
exceed A. This allows us to ignore any potential violations of perfect synchronism of
components in a received signal.

In accordance with the concept of DS spreading, the complex envelope of a received
group signal S(z;by,b,, ..., bx) is the sum in k of signature complex envelopes manipu-
lated by users’ datastreams, each of them being defined by (7.6). Generally, each user’s
signals may have its individual amplitude; however, we will restrict ourselves to the
simplest case of equal intensities. Since the assumption of perfect synchronism permits
us to set all delays 7 and initial phases ¢ in (7.7) equal to zero, we then arrive at the
expression of the received complex envelope (subscript r discarded as needless now):

S(tbi,by, . bg) = Bi(1)Sk(1) (7.10)

k=1
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Figure 7.13 Data symbol and chip alignment in synchronous CDMA

Let us focus on a single data symbol interval of duration 7. Again, due to the complete
synchronism the current data symbols of all users start and end strictly simultaneously.
With by being the kth user’s current data symbol, (7.10) during a single symbol interval
may be written as follows:

S(l;b) ZZK:kak(Z) (7.11)
k=1

where b = (b1, b, . . ., bg) is the K-dimensional vector of current data symbols of all users.
Remember now that every signature in the DS CDMA system is an APSK signal
described by the model (5.2):

S(r) = jilak,,-s'o(z —iA) (7.12)
=0

where {ak o, a1, - . - ax, n—1} 1s a code sequence, manipulating chips of the kth signature,
and N is a spreading factor, i.e. the number of chips per one data symbol. Figure 7.13
emphasizes the strong mutual alignment between signature chips and boundaries of
transmitted data symbols characteristic of synchronous CDMA.

Based on (7.11) and (7.12), several approaches to designing signature ensembles for
synchronous DS CDMA networks may be formulated. Among the main factors influ-
encing the procedure and results of the signature set optimization is the relation between
the number of users K and spreading factor N, as well as the receiver algorithm
(multiuser or conventional).

7.2.2 Optimizing signature sets in minimum distance

Suppose that the receiver of any complexity is admissible and, therefore, we are allowed to
use the optimal (multiuser) algorithm of estimating the data vector b based on the search
for the value of b minimizing the distance between observation y(f) and the candidate
group signal s(z;b) (see Section 4.1). In terms of the complex envelope this means
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minimization in b of the squared distance ||Y(¢) — S(t;b) ? where S(1;b) is given by
(7.11). Then a solid theoretical motivation is evident towards finding the ensemble of K
signatures {S (1), S2(0), ..., S k(#)} minimizing the probability of error in the estimate bof
a K-user data vector b = (bl, by, ...,bg). Returning to the material of Section 2.3, let us
recollect that asymptotically (with SNR sufficiently high), minimizing the error probabil-
ity is equivalent to maximizing the minimum distance in the constellation of M trans-
mitted signals. In the studied case the alternative signals to be distinguished are copies of
(7.11) corresponding to different data vectors b. Hence, we may formulate the problem of
optimizing the signature set as maximization of the minimum squared distance:

d —mmd2(b b') = max (7.13)

min
b#b’

where the minimum distance d,;, is found over all different pairs of data vectors
b= (b1,bs,...,bk),b = (b}, b, ..., b%),b #b and (see (2.43)):

d*(b,1) = [|s(1;b) — s(t:b)]*= % |S56) = S(i: ) (7.14)

Let us study in more detail binary data transmission when the data symbols are bits
transmitted directly by BPSK so that by, b, = £1,k = 1,2,..., K. This narrowing of the
scope makes the analysis a bit easier, subsequent spreading to a general PSK being
straightforward. Then using (7.11), (2.41) and (2.42) in (7.14) results in:

T 2
K K K
/ - 5 S _ . )
b b E S/CS/C 5 kil E/&S/c(l) dt =E, /il lil EKEIPI (7 15)
0o "= ==

where e; = by — bj, takes on one of three possible values: 0 or £2; E) = 5 fo |Sk(t)| dzis
the energy of the kth signature used for transmitting one bit, these energies for all K
users assumed the same, and:

T

= 2—,1% / $i(0S; (1) di

0

is the correlation coefficient between the complex envelopes of the kth and /th signa-
tures. Using properties of the correlation coefficients seen from its definition,
P = L, pry = Py (7.15) takes the form explicitly showing that distance is always real:

2(b,b) = EbZEk +2E,,Z Z exe/Re(py) (7.16)

=1 I=k+1

Take two data vectors (bit patterns) b, b’ differing in only one, for instance the first,
component. Then g, = 0,k =2,3,...,K,e; = £2 and from (7.16) d*(b,b’) = 4E,. Since

délm is never greater than the squared distance for any specific pair of b, b’:

d>. < 4E, (7.17)

‘min
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This upper bound tells us that a signature ensemble, for which d2. = 4E, should be
treated as optimal according to the criterion of maximum minimum distance (7.13). One
of the sufficient conditions of achieving the bound (7.17) is the weak orthogonality of

complex envelopes of signatures:

Lk=1

=4 7.18
0k 41~ (7.18)

Re(py) = {

The reason why complex envelopes satisfying (7.18) are called weakly orthogonal
becomes clear after comparison of (7.18) and (2.46) (p; = 6x). The latter is much more
demanding and forces the signals s(7), s;(r) with the complex envelopes S(7), Si(¢) to
preserve orthogonality under any mutual phase shifts. At the same time, two signals
modulated by S(¢) and S(7) exp [j(7/2)] = jS(?), i.e. just quadrature (phase shifted by 7/2)
replicas of the same signal, are orthogonal, but lose orthogonality if their mutual phase
shift differs from +7/2. Hence, S(7) and jS(¢) are only weakly orthogonal. Of course, any
orthogonal (in terms of (2.46)) signatures are weakly orthogonal, but not vice versa.

For the signatures meeting (7.18), equation (7.16) becomes d*(b,b') = E, S5, 7. At
least one of the summands in this sum is non-zero, so that d2, > 4E,, whereby along
with (7.17) d2. = 4E,. The implication of this is that the ensemble of K weakly
orthogonal signatures is optimal in minimum distance, and hence (asymptotically) in
probability of confusion between different users’ bit patterns.

A lot of techniques exist for generating orthogonal (meeting (2.46)) spread spectrum
signals for various lengths (spreading factors) N. One example is Walsh functions or,
more generally, Hadamard matrices, discussed in Section 2.7.3 and providing binary
orthogonal codes. Another possible option is cyclically shifted replicas of any sequence
with perfect periodic ACF, e.g. ternary, polyphase etc. (see Section 6.11). Any ensemble
of K’ orthogonal signatures is trivially transformed into the set of weakly orthogonal
signatures containing 2K’ signals by adding quadrature replicas of any signal—a fact
repeatedly referred to before (see Sections 2.5 and 4.1).

Under any specific choice of orthogonal signatures the signal space dimension strictly
limits their number (and hence, number of users K) (see Section 2.5). According to
(7.12), given the chip, N-dimensional vector a; = (ax o, dx. 1, - - -, arx. n—1) of the kth code
sequence exhaustively determines the kth signature, and the orthogonality of the kth
and /th signatures is equivalent to the orthogonality of vectors ay, a;. Indeed, repeating
the derivation of (2.52) for complex envelopes (alternatively using (5.7)) allows the inner
product of S(7), S;(f) to be found, as:

N-1

(Sk, S[) = 2E() Z akJa,*J = 2E0(ak, a;) (719)
i=0

confirming that the orthogonality of ay, a; is necessary and sufficient for the orthogon-
ality of Si(r), S;(7). Dimension N of the space of code sequence vectors ay is evidently a
maximal number K’ of orthogonal signatures Si(f). Let us stress again that when
quadrature splitting of every signature is allowed, the maximal number of users accom-
modated within the signature ensemble is defined as K = 2K’ = 2N. If, however, for
some reason the accurate phase shift £7/2 between the quadrature copies of the same
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signature cannot be maintained, weak orthogonality is insufficient, and the maximal
number of users is two times smaller: K = K’ = N.

Note that weak orthogonality is only a sufficient but not a necessary condition of
equality in (7.17) and, in particular, it is quite an interesting issue whether it is possible
to achieve the upper bound in (7.17) with the number of signatures exceeding the
dimension of the signal space n;. As follows from the previous reasoning, n; is either
2N or N depending on whether or not a quadrature splitting of signatures is allowed.
A synchronous CDMA system in which K > ny is called oversaturated, emphasizing that
the excessive number of code vectors involved excludes the chance of their orthogonality
(possibly a weak one).

The opportunity and algorithm for obtaining the minimum distance equal to the
upper limit (7.17) in an oversaturated system was proved in [56]. To discuss the idea
more transparently and simplify the notation, let us first ignore the opportunity for
doubling the signal space dimension due to a quadrature splitting, putting n, = N. Let
us take NV orthonormal N-dimensional vectors a;, k= 1,2,..., N; (a;, a;) = 6y, and add
to them one more vector built as:

1 N
ANy ] = —— ay (7.20)
SR

Using N + 1 vectors ag,k = 1,2,..., N + 1 thus obtained to form K = N + 1 signatures
according to (7.12), we have the N + 1th signature:

Sny1(t Z Sk(?)

and, modulating all the signatures by binary data symbols b,y = £1, a group signal:

N+l
Zb/‘Sk Zkak +TbN+l ZSk

N

Z (bk +—= bN+l)Sk( )- (7.21)
=

The difference between the two versions of the group signal corresponding to two bit

patterns b = (b1, ba, ..., byy1), b = (B, b5, ... by, is:
) ) N 1 )
S(t;b) — S(;b') = ex +—=¢ )Sct@ =b—b, =0,£2
(1:b) S >;@ e )Sulth = b~

Using the same technique as in (7.15) and the orthogonality of the first NV signatures, we
arrive at:

N 2
2,1 = ||S(1:b) — S(t:V)|[ = E PRI, 7.22
(b.b) = [|S(:b) uw!b;@fﬁsQ (7.22)
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Since the bit patterns b, b’ are different, at least one of ¢4,k =1,2,..., N + 1 is non-
zero, i.e. equals +2. If ey, ; = 0 then such an ¢, is present among €1, ¢, ...,y and
d’*(b,b') > 4E,. If ey, = +2, then the summands in (7.22) with ¢, = 0 equal 4/N,
while all the rest are 4(v/N £ 1)*/N, resulting in d>(b,b’) > 4E, min{1,(vV'N — 1)*}.
Combining these results we come to the estimate of the minimum squared distance
from below:

4(\/ﬁ— 1)2E1,,N <4

2> min{4E;,74<\/ﬁ - 1)2Eb} -
4E, N > 4

Comparing this with (7.17) shows the possibility of adding one extra signature to the N
orthogonal ones without sacrificing the minimum distance, whenever N > 4. General-
ization of this idea underlies the following procedure of building an optimal over-
saturated signature ensemble [56,57]. Let vectors aj,af,...,a}_, be an orthonormal
basis of N-dimensional space where N = 4/, / is natural. Let us use them as codes of N
primary signatures. We arrange oversaturating supplementary signatures as an /-layer
procedure. Supplementary signature code sequences of the sth layer are:

3 #-1
R —iZaO k=01, N 1 =12 (7.23)
k=9 dktm T 5 < Al T Ty ) O T sy :

m=0 m=

In other words, in the first layer of supplementary signatures we perform splitting of
the basic set {a),af,...,a}_,} into 4! groups each containing four primary signa-
tures. The linear combination (7.20) (where N = 4) of these four basic signatures is
added to their group, producing the total of N + N/4 signatures. At the second layer
we split all supplementary signatures of the first layer the same way into groups of
four and introduce again in each group linear combinations (7.20), and so forth. The
tree in Figure 7.14 illustrates the whole procedure. Then there are 4/~! supplementary
signatures at the first layer, 4= at the second and generally 4~ at the sth layer
totalling:

4-1 N-1

41—1 4/—2 4 1=
+4 2 At 3 .

supplementary signatures, or—together with the primary ones identified with a layer
zero—an overall number of signatures:

K

AN -1 |4N
T3 |3

Since norms of all vectors (7.23) remain equal to one, supplementary signatures preserve
the same energy per bit £, as the primary ones.
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Figure 7.14 Constructing an oversaturated signature set

Let S",i(t) and b}, be the complex envelope of the kth signature on the sth layer and the
user’s bit transmitted by this signature, respectively. Then composing a group signal
similarly to (7.21) leads to:

bl<
=

-1 S -1

N 1 /
.1 1 a1 y] o
ZbOSk St + - D BT S () +5Se() =D D BSi(0)
k=0 k=0 5=0 k=0

bl

which after substituting (7.23) turns into:

|=

/ x—1 45—

Ssh) = Y5

s=0 k=0 m

IS
—_

-0
sz4“k+r11 (Z)
0

The double sum in k, m here contains N summands independently of s. It can be
rearranged into a single sum after changing the summation index as:

Sktm=n=k= Lﬂ

leading to (with redesignation n — k):
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Then the squared distance between the group signals corresponding to different bit
patterns generalizes (7.22) as:

N-1 2

1 1 1
2 / —FE 0 Al Ay | — 24
d*(b,b) bg:o 5k+2am + +21718L4/51J +21<€0 (7.24)

where, as before, €}, = 0, £2 is the difference of bits transmitted on the signature S;(t) in
the user’s bit patterns b, b'. If all €5, s > 0 are zeros (bits of b, b’ on all the supplementary
signatures are identical), then at least one of 52 equals £2 and d*(b,b’) > 4E,. If uis a
maximal layer number for which €, = &2, u > 0, then a summand of (7.24) containing

u .
ey, may be presented as:

(2% + 27 xy o £ 2x, ) £ 1]

41171

where xy =¢)/2=0,£1,5s=0,1,...,u — 1. The number in the round brackets of the
modulus above is always even so the squared modulus is never smaller than one. Since
there are exactly 4" terms in (7.24) entered by &% with any fixed m, we come to an
estimation d?(b,b’) > 4“E;,/4*~! = 4E,, proving that the oversaturated ensemble of this
sort does not reduce the minimum distance of the primary orthogonal set.

In its general form the procedure described does not guarantee that the supplemen-
tary code sequences (7.23) obtained from the binary primary sequences will also be
binary. To meet this latter demand, a version of the procedure may be used [57] in which
primary sequences are generated as rows of the /th Kronecker power of the 4th order

Hadamard matrix having an odd number of plus ones in any column.

Example 7.2.1. Let us build up an oversaturated ensemble of binary signatures of length
N =16 =42. According to the scheme just discussed, 5 supplementary orthogonal
signatures may be added to the N = 16 primary ones (four at layer s =1 and one at layer
s = 2) providing total number of users K = 21. In order to have all signatures binary take the
Hadamard matrix:

+ o+

++ +
+ +

JF
+
having one or three plus ones in its columns and form its Kronecker square:

H, H, H, H,
-H, -H; H; H,
H, -H, H, -H,
H, -H; -H, H,

His = Hs; @ Hy =
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Primary signatures are just rows of this matrix, i.e. in the normalized form:

0,0 .0 .0.0,0.0.0,0,0,0 .0 0 0 0 _0\T_
(ao,al,az,a3,a4,as,aé,a7,ag,a9,aw,an,a12,a13,al4,als) =

+ 4+ o+t o+ o+
— -+ 4+ - =+ 4+ = =+ + - =+ 4+
+ =+ -+ =+ =+ =+ = + - + -
- -+ - =+ - =+ - =+
T O e S s
+ 4+ - -+ + - - = -+ + - - + +
— -+ -+ =+ + =+ -+ -+ -

I T T S T T

B R T T e S e
— -+ 4+ + - = - =+ + + + = -
N T T e S
+ = =+ -+ + - 4+ - -+ - 4+ + -
+ o+ + - - - - = = - — 4+ + + +
- -+t + = =+ + - = = =+ +
R T T S S
+ - -+ -+ + - -+ + -+ - - +

Applying (7.23) to the rows of this matrix gives five supplementary binary signatures:

aj + -+ 4+ + -+ + + -+ + + - + +
al -+t - —-=-+ - =+ -+ + + - + +
a;=Z+—++—+——+—++—+——
aj + -+ + -+ - - -+ - - 4+ - 4+ 4+
aj + -+ + -+ - -+ - + + + - + +

It may be quite a challenge for the reader to check the minimum distance property of this
oversaturated ensemble.

Let us remind ourselves that the criterion of minimum distance is adequate (at least
asymptotically) whenever multiuser reception is affordable. Up to this point we have not
worried about the multiuser receiver complexity. For the case of non-oversaturated
systems (K < N) this is not a critical matter, since—the orthogonal ensemble being
optimal—multiuser reception degenerates in this case to a single-user one (see Section
4.1). On the other hand, when an oversaturated system is analysed, the opportunities for
simplifying the multiuser algorithm at the cost of proper design of signatures are very
important. One way to realize this approach again exploits the idea of splitting the
overall N-dimensional signal space into orthogonal subspaces of smaller dimension 7.
However, in contrast with what was discussed above, every subspace is further
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oversaturated autonomously, providing n + n,, signatures, so that all signatures from
different subspaces remain orthogonal. The reason for so doing is to split an overall
multiuser algorithm into N/n parallel ones, each operating in the n-dimensional sub-
space independently of the others. With a moderate n these partial algorithms are
simple, making the whole receiver structure technologically feasible. The total number
of users achievable in such a system is:

N y
;(n—i—nm,) :N(l +n(,)

The problem of optimizing an ensemble of this sort is in a sense non-trivial, and just
adding n,, supplementary signatures to the » primary orthogonal ones does not solve it.
We refer the curious reader to [58,59] for details. Another alternative is the design
of signature ensembles allowing implementation of multiuser algorithms in various
computational-effective iterative forms [60,61].

7.2.3 Welch-bound sequences

Let us get down to another scenario, where a priori tough limitation on the receiver
complexity makes acceptable only the simplest, i.e. single-user or conventional, recep-
tion algorithm. In this case a decision by on the current data symbol b, of the kth user is
defined only by correlation (7.8), as though no interference except AWGN is present at
the receiver input. With no loss of generality, we may admit that a current symbol is
received at the interval (0,7] and put delay 7, and phase ¢, in (7.8) equal to zero:

T
= / Y(1)S,(1)dt (7.25)
0

When all signatures are perfectly synchronized and their number K does not exceed N,
orthogonal signatures are again the best choice, since they make a single-user algorithm
identical to a multiuser (ML) one. Certainly, no MAI arises in this case so ignoring all
the signals of the other users does not undermine the receiver optimality. In contrast to
this, the case of an oversaturated (K > N) system is of separate interest, because all
signatures then cannot be orthogonal and MALI is unavoidable. Returning to (7.11), let
us present the observed complex envelope as:

Y(t) = S(t;b) + N(t Zb’Sl N(1)

where N(r) is the noise complex envelope and designation b’ = (¥ ,bh, ..., b)) symbol-
izes again (as in (4.8)) the genuine (i.e. unknown at the receiver) data pattern transmitted
by K users to distinguish it from the one b = (by, b3, . . ., bg) hypothesized in the course
of the decision. After substituting this into (7.25) we obtain:

K
Ze =20 E+2E Y bijy + / N(1)S)(1)dr (7.26)
=1

T4k
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where £ = % fOT |Sk(t)|2dt is (assumed the same for all users) the signature energy per one
transmitted symbol, and p, = gy, is, as always, the correlation coefficient of the com-
plex envelopes of the /th and kth signatures. The second term of (7.26) presents MAI,
i.e. mutual interference created by the alien signals at the output of the receiver ‘tuned’
to the kth user signal. Each summand &}p, of the sum in / (i.e. the contribution to total
MALI of the /th user signal) is random due to the randomness of users’ data symbols 4.
For any PSK, data modulation ]b’{ = 1 and average power (variance) of each contrlbu—
tion to MAI is 4E2|p, |*. Naturally, all the users transmit their data independently, so
that the total average power (variance) of MAI Py at the kth receiver output is a sum in
[ of the powers of individual contributors:

Py = 4E? Z |PA1|

1#

Since this quantity evaluates the power of MAI for only the kth user receiver, to cover
the whole system we may sum it in k, coming to the result:

ZP,,c = 4E? Z Z ol (7.27)

—1 =1
I#k

Now we may see that an adequate criterion of optimizing synchronous signatures,
single-user reception postulated, is the minimum of the total MAI power or, equiva-
lently, the sum of squared correlations in the expression above. Of course, again for the
case K < N, the orthogonal signature set creates no MALI, i.e. turns this sum into zero so
that only oversaturated ensembles are of a special interest.

The criterion just introduced typically emerges in the literature as the minimum of the
total squared correlation (TSC):

K
Z || = miin (7.28)

1 /=1

I
M=

7SC

=
||

which does not differ from the original one, since the sum in it is greater than the one in
(7.27) by a constant K (o, = 1).

There is a fundamental lower limit on the TSC known as the Welch bound [62]. Let
us derive it, expressing first the correlation coefficients in terms of elements ay ;
of the signature code sequences. Assuming all code sequence vectors
a, = (ak,0,ax.1,- - -,k N—1) normalized so that ||ak||2: N, (7.19) gives:

. (St,S) (St,S) ak, a)
frnd frnd a, la,
P 2E T 2aelalEo NZ ki
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Substituting this into the definition of TSC in (7.28) results in:

| K K NoIN-]
_ ) * * .
TSC = V2 E E Qg iy Ay 4l
k=1 =1 i=0 j=0
| Nolnv-1 K K | NoIN-1| K 2
* *
N D i Y ) = N2 > iy,
i=0 j=0 k=1 =1 i=0 j=0 |k=1

Since summands in i, j are all non-negative, omitting those with different 7, j never
increases the sum, so that:

TSC > NZ (Z || ) (7.29)

To come to the final result one may further use the Schwarz inequality, but this step
becomes unnecessary in the most interesting case of PSK signatures. For any PSK
alphabet |ax ;| = 1, which concludes the derivation of the Welch bound:

| N1/ K 2 K2
k() -

In the absence of oversaturation (K < N) the straightforward corollary of definition
(7.28) is a tighter bound, based on the fact that with orthogonal signatures all sum-
mands in (7.28) with unequal k, / vanish and TSC achieves its minimum equal to K.
Combining the results brings about the following general form of the Welch bound:

K,K<N

TSC= 3 s (7.30)

—,K>N
N

Certainly, the set of sequences achieving (7.30) (Welch-bound sequences) is the best
possible in total MAI criterion for a single-user receiver. But in fact, the significance
of these sets goes far beyond only this feature, since Welch-bound sequences maximize
the Shannon capacity of CDMA channels with AWGN and Gaussian input, the latter
constraint losing its importance whenever a receive symbol SNR becomes small enough.
Details of the proof of this remarkable property can be found in [63].

Since TSC includes K squared correlations of vectors with themselves, each equalling
one, the difference TSC — K covers only unwanted correlations between non-coinciding
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vectors, which we are interested to have as small as possible. There are K(K — 1) such
vector pairs entering TSC, so that average squared correlation p? per pair is:

— TSC—K
P=KE -1

giving, together with (7.30), the lower bound on this parameter:

0, K<N
P> K_N . (7.31)
NK-1) "~

From the way of obtaining (7.30), we may deduce how to come to the Welch bound-
ensemble. Of course, only a non-trivial case of oversaturation should be discussed, since
ways of generating orthogonal sequences have been considered previously. First of all,
equality in (7.29) is a sufficient (and, of course, necessary) condition of equality in (7.30),
or, considering the equation preceding (7.29), sequences for which:

K
> aiap =0, i) (7.32)
k=1

are Welch-bound sequences. Suppose all vectors aj,ap,...,ax of signature code

sequences are written as columns of an N x K signature matrix A:

aro azo . ag.o
ag an g . ag.1
A:[alaz...aK]: ’
aiN-1 dyN-1 ... dKN-1

then (7.32) means nothing but orthogonality of the rows of A. Therefore, to build up an
oversaturated (K > N) ensemble of Welch-bound sequences, one should just construct
an N x K matrix A with orthogonal rows. Since the dimension of rows of such a matrix
is greater than their number, there is no principal prohibition on its existence. Then the
desired sequences are simply columns of A.

We may now estimate the floor (i.e. noise-neglected) SIR for an oversaturated Welch-
bound ensemble. The total MAI power P; may be found from (7.27) and (7.28) as
P; = 4E*(TSC — K). Since this quantity is MAI summed over K single-user receivers,
an average output MAI power per receiver will be Py = P;/K. The useful (i.e. caused by
the kth signature) effect at the kth receiver output expressed by the first term of (7.26)
has power 4E? (PSK modulation assumed), so that the floor power SIR with respect to
an average MAI power according to (7.30) is:

, 42 K N
'~ Py TSC—K K-N

q (7.33)
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Example 7.2.2. Let us construct the binary Welch-bound ensemble of K = 16 sequences of
length N = 14. For this we may make use of the matrix Hqg of Example 7.2.1 and discard two
arbitrary (e.g. the last two) rows. The matrix A obtained this way is exactly what is needed, and
its 16 columns are Welch-bound signatures of length 14. TSC for the ensemble thus found
equates accurately to its minimum value determined by (7.30):
K? 256

TSC=N="2
The floor SIR estimated with respect to average MAI power per receiver is according to (7.33)
> =NI(K—-N)=7.

If belonging to a PSK alphabet is the only restriction on the signature code sequences,
then the algorithm for constructing Welch-bound sets described above works univer-
sally. For example, rows of the matrix A may always be taken as K cyclically shifted
replicas of the Chu sequence of length K. As was shown in Section 6.11.2, Chu codes
exist for any length and all their different cyclic replicas are orthogonal. On the other
hand, when all signatures should be binary (a; ; = £1) orthogonality of all N rows of
the matrix A with N > 2 is possible only for K divisible by four (see Problem 7.14). This
implies that for K # 0 mod4 binary signatures the Welch bound (7.30) is not tight, and
more precise lower borders should exist. Derivations of them may be found in [64,65]
(see also Problem 7.17).

7.3 Approaches to designing signature ensembles for asynchronous
DS CDMA

Let us extend the issue of signature design to the case of asynchronous DS CDMA,
where time and phase shifts between individual user signals are random. On the
assumption of employing a single-user receiver, the decision on the current symbol of
the kth user is again done on the basis of correlation (7.25). Now, however, a tough
alignment between the boundaries of data symbols and the chips of different users is not
maintained due to arbitrary mutual time shifts of users’ signals. Suppose that the kth
user data receiver is explored and 7 is the delay of the /th signal against the kth signal. In
order to concentrate only on the issue of designing signature codes let us assume that
chip boundaries of all K signatures are synchronized, i.e. mutual delays are multiples of
A: 1 = mA, where n; is integer, 0 < n; < N. Then the situation is well explained by
Figure 7.15 (for k = 1), stressing that in asynchronous CDMA, unlike synchronous
(see Figure 7.13), data symbols of other users may change during the reception of the
kth user’s current data symbol. Still the main factor making design of asynchronous
signature sets harder is the necessity to distinguish every signature from all possible
shifted replicas of the others, which is not necessary in synchronous CDMA.

Suppose first that no change of data symbols of all users happens during the received
symbol of the kth user, i.e. b; ;1 =b;,/ =2,3,...,K. Then the situation is different
from the synchronous one only in the mutual time-mismatch of signatures. Start with
the assumption that the signature period L coincides with the processing gain N, which
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Figure 7.15 Datastreams and signatures in asynchronous CDMA

is the number of chips per data symbol duration or, equivalently, of chips integrated in
the correlator. If no restriction is imposed on the possible range of mutual delays, the /th
signature may be presented by any of its N cyclically shifted replicas, so that there are
N(K — 1) different N-dimensional vectors, each of which is a potential source of MAI in
the kth receiver. When a channel is subject to multipath effects every cyclic replica of the
kth signal may also create interference at the kth receiver. Let us admit thatup to N — 1
such replicas may exist, i.e. the multipath delay spread ranges up to the period of the
signature. Another reason to include the cyclic replicas in the explored vector set is a
desire to have low autocorrelation sidelobes, which is important in the search problem
(see Section 8.2). With such an extension we have a total of KN vectors, whose correl-
ations should be as small as possible.

The Welch bound is again a good instrument to estimate the lower limit of the average
squared correlation p? of those KN vectors. For that it is enough to replace K by KN in
(7.31). Since KN > N for any K > 2 this gives:

—_ K-1
2> 7.34
F=kN -1 (7:34)
This inequality shows the fundamental lower limit, which an average squared correl-
ation between all cyclic replicas of all K signatures of length N (own replicas of each one
included) can never fall below. When the number of users is about ten or more this

version of the Welch bound becomes especially simple:

— 1
2> K 1 7.35
> K> (7.35)

hS)

Suppose now that the signature period in the number of L chips covers several data
symbols L > N and data of no user changes during the kth current data symbol, as
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before.! Again, let the delays range up to the signature period. Since the number of
chips per data symbol (integration interval) remains N, we, as previously, deal with
N-dimensional vectors, but the number of vectors whose correlations are controlled
is now KL instead of KN, so that the bound stems from (7.31):

— KL — N
P ZNKL-1) (7.36)
which again turns into (7.35) with K > 1. The last result makes it possible to demon-
strate that data modulation can in no way lower the bounds obtained. Indeed, every
data-modulated signature may be considered as a new sequence of some (possibly very
big) period Li. Then all modulated signatures will have a common period L, being a
least common multiple of all L;, and the average squared correlation will be bordered
from below by (7.36), again meaning that (7.35) is valid for the case of many users.
The derivations just undertaken establish a criterion of asynchronous signature set
design: the ensemble of many signatures may be considered appropriate if its average
squared correlation is close to the bound (7.35). Let us demonstrate that ensembles of
random signatures attain this bound. Let all signatures be composed independently of
each other by a random independent choice of elements of each of them. The whole
procedure is similar to drawing balls out of an urn. Set an M-ary PSK alphabet and treat
it as an urn with different M balls (code symbols). Pick out one ball K times, each time
noting the result and returning the ball to the urn. This gives the first symbols of K
signatures. The next symbols of all the signatures are generated the same way. Since all
M-ary symbols in this scheme are equiprobable, uniformly spaced on the plane (see
Figure 2.6¢) and independent of each other, we have the following expectations:

l,k=land i=j
ak’i = 0, [lk_’,'a}i/- = = 6kl§ij (737)
0, otherwise

the second equation stemming from the fact that the expectation of the product of
independent entities equals the product of their expectations. Let us use this in an
estimation of the average squared correlation of signatures at the integration interval
of N chips:

2

|2 (m)|* = (7.38)

N—1

§ : *
aksia/‘i—m

i=0

Physically (7.38) is nothing but the expectation of MAI power (k # [), or of multipath
interference power (k = /) created by the /th signature shifted by m chips at the kth

'Saving symbol N for the processing gain, i.e. the number of chips per data symbol, we will from now on
denote a signature period by L, whenever they may be different.



230 Spread Spectrum and CDMA

correlator output. Squaring the modulus and interchanging the summation and aver-
aging (expectation of sum equals sum of expectations) gives:

—1N-1

|z/\1 ZZak,a,, L j—m (7.39)

To estimate the MAI effect set k # / and split the summands into products of independ-
ent random variables:

N-1N—

* *
|le1 a/\’Jak.j i j—m
i=0 j=0

._

Now applying (7.37) to this equation leaves only terms with i = j in the right-hand side

sum, resulting in |z'k/(m)|2 = N. Estimating the effect of multipath interference let us put
k =1, m # 0, which brings (7.39) to the form:

N-1N-1

|Zlck § § akzak, mak/ak,/ m

i=0 j=

In terms here having different i and j a; ; is independent of both ay_ ;_,, (since m # 0) and
ay,j (since i # j). By the same reasoning, ay ;_,, is independent of both a; ; and ay ;.
Therefore:

Ak, ik j—m a/\l mak/ i@k j—m akt mak/’ l#]

Due to the independence of different symbols of the same sequence @ ax,;—m =
ay,i - arj-m =0, whenever i#j—m, and a i_ma,*c/ =a; i m- a,ﬁj =0, whenever

i—m #j. Hence, addends of the double sum above with different i/, j may appear
non-zero only if both equations are true: i = j — m and i — m = j, which is impossible
for any non-zero m. Consequently, only summands with equal i and j produce non-zero
contribution, and:

|Zkk m;é Z|ak1‘ ‘akz m‘ =

The useful effect, i.e. the power, created by the non-shifted kth signature at the kth
receiver output:

= 2
|Zkk (0 Z |axi| = N?
i=0

Then the normalized unwanted effects created by either MAI or multipath interference
(unwanted squared correlations):

()l 1wl 2OF _ 1 (7.40)

2O N7 2k(0) N
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It is clearly seen now that all unwanted squared correlations in the ensemble under
consideration attain the lower bound (7.35), i.e. sets of random signatures are optimal
when the number of users is around ten or more. It is extremely important to emphasize
that the data modulation of random sequences meeting (7.37) (multiplying them by data
symbols independent of them) does not destroy (7.37) (see Problem 7.20). Therefore, the
presence or absence of modulation does not affect all of the derivations above, as well as
the final result (7.40) and conclusion on the set optimality.

Equations (7.37) seem to give an unequivocal instruction for designing signature
ensembles. In practice, however, signatures cannot be random, since the receiver should
be a priori aware of the signature modulation law in order to generate the necessary
correlator reference. To realize the randomness properties (7.37) by the deterministic
coding rules, so-called pseudorandom sequences are necessary.

Take the deterministic PSK signature of period L and treat it as though it is one of
several equiprobable realizations of a stationary ergodic random sequence {4y, ;} (ran-
dom discrete-time process) [14,66]. The other realizations may be all cyclic shifts of the
initial sequence. Then, due to the ergodicity property, each realization presents the
whole random process exhaustively, and statistical averaging {ay ;} over all realizations
is equivalent to time averaging, i.e. evaluating the expectation @; and correlation
moment a ;a4 ; , via constant component and periodic ACF of the deterministic
signature, respectively:

L 1
k
= —Za/\I - T aklakl m Zaklakl m pk]\( ) (7.41)

In the same way, treating two deterministic signatures as realizations of two jointly
ergodic random sequences {ay ;} and {a;;}, we have equality between the correlation
moments of two random sequences and CCF of two deterministic signatures:

ak ’all m Z A lali m p/cl(m) (742)

The comparison of (7.41) and (7.42) with (7.37) sets a criterion of pseudorandomness: to
serve as signatures in asynchronous DS CDMA all the deterministic sequences of the
ensemble should ideally have zero constant component, perfect periodic ACF and zero
periodic CCF:

aro = 0; prie(m) = 0,m # O0modL; py(m) = 0,k,/ =1,2,...,K (7.43)

In the case of unconstrained mutual time shifts (any m in the range 0,1,...,L — 1 are
probable) the last demands obviously contradict each other, making ensembles of this
sort hypothetical for any finite L. Indeed (see also Problem 7.21), the requirements for
perfect ACF and zero CCF mean nothing but zero level of correlations between all
cyclic shifts of K sequences of period L, i.e. zero value of the average of unwanted
squared correlations p?. As (7.34) and (7.35) show, this is impossible with K > 2, and in
particular with many users p? cannot fall smaller than 1/L.
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The conclusion we just arrived at explains why so many efforts have been dedicated to
searching for ensembles whose characteristics approach those of the hypothetical
ensembles mentioned above when length L grows. Quite a popular criterion of this
approximation is the minimax one, orienting the ensemble design towards minimizing
maximum value among all unwanted correlations. Define the correlation peak pmax as
the greater of two entities: the maximal autocorrelation sidelobe p¢ — among all
sequences and the maximal cross-correlation peak p . among all pairs of sequences:

Pmax = max{pfnax’ prcnax}7 pgqax = nkl,%x|ppak/\’ (Wl)|, pgnax = r{};d”?(|ppyk1(m)| (744)
m#0 k#l

Naturally, for the hypothetical perfect ensemble, pmax along with p? is zero, and for any

real ensemble pyx may serve as an adequate measure of its proximity to the perfect one.
Since the maximal value of any variable can never be smaller than its average,

P > p?, which spreads the Welch bounds (7.34) and (7.35) on the correlation peak:

K—-1 1
2> ~— 7.45
pmaX_KL—l L ( )

where, again, the last approximation corresponds to the case K > 1. With additional
limitations on the PSK alphabet, the bound above may appear rather loose, especially
when the number of sequences approaches L. In particular, for sufficiently large
ensembles of binary {£1} sequences the Sidelnikov bound holds [67,68]:

2 L

K>3 (7.46)

2
Pmax > Z’

Ensembles having pnax attaining the limit predicted by the lower bounds are certainly
optimal in the correlation peak criterion and are sometimes called minimax. Some of
them are discussed in Section 7.5.

7.4 Time-offset signatures for asynchronous CDMA

In many real situations mutual time shifts of asynchronous signatures may vary only
within a restricted range. The finiteness of a channel delay spread on the one hand, and
system geometry on the other are the most typical factors setting such limitations. To be
specific, let us turn to the uplink of a cellular mobile radio. The local clock of an active
MS is synchronized with the received BS signal and has a delay 7; versus the BS clock
determined by the distance D from BS to MS as 7, = D/c, where c is the speed of light.
Since the signal transmitted by a specific MS reaches the BS receiver with the same
delay, the total delay of the signal arriving at BS versus the BS clock is 7 = 271 = 2D/c.
Let Dpax be the maximal distance, the signal from which has intensity perceptible by the
BS receiver. Strong path attenuation (see Section 4.6) permits signals arriving from
distances markedly exceeding the cell radius D, to be ignored, which gives a rough
estimation Dp,x = D.. Then the maximal value of 7, is 2D, /c and signals from mobiles
at distances from BS ranging between zero and D, arrive at BS within the time window
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[0,2D./c]. Besides, multipath replicas of signals are also present, so that a complete
extension 7py,x of the window spanning the delays of all multipath signals increases by
the channel delay spread 7y45: Tmax = 2D./c + 745, Where 74 may be maximized over all
possible locations of MS. Figure 7.16 helps to show the details of these deliberations.
The signal of some specific MS may have an advance as well as a delay compared to
some other, and all multipath replicas of any MS signal are potentially usable by a BS
receiver (RAKE processing; see Section 3.7). Therefore, the entire range of possible
mutual time shifts between any multipath replicas of any signatures proves to be
[_Tmax, 7—max]s Tmax = ZDL‘/C + Tis-

Certainly, in circumstances like these, one should take care to observe the second and
third conditions (7.43) within the range of only really likely values of m. Let us denote
the contents of 7« in the number of chips rounded upwards as Mpax: Mimax = F‘"T}
Then the range of m, where (7.43) should be obeyed, is [—max, Mmax]. NOw take a
sequence {a; ;} of the period L > K(mmax + 1) and use as K signatures its cyclic replicas
offset from each other by my., + 1 positions:

ki = al,i—(k—l)(n1max+l)7k = 1727 .o 7K; i=... ’ _1707 17 sy
as is shown in Figure 7.17. Evidently all correlations between signatures thus arranged
will be expressed in terms of ACF p;;(m) of the initial sequence {a, ;}. Evaluating the
CCF of the kth and /th signatures results in:

1 L-1

) =3 ausaiy = ;
Prki\M) = L Aieidy i = L al-,l'*(k*1)(mmaﬁrl)al,F(Pl)(;ﬂmuerl)fm
i=0 i=0

or:
pra(m) = pui[(k = 1) (M + 1) + ] (7.47)

Suppose now that the initial sequence {«; ;} has either perfect or good enough periodic
ACEF py;(m). The former is possible, e.g. for ternary or polyphase sequences (see Section
6.11), while any minimax binary sequence (Sections 6.7 and 6.9) may serve as an
example of the latter. The idea is that all sidelobes of p;;(m) are negligible. Then with
|m| < Mmmax the argument in the square brackets of (7.47) turns into zero modulo L only
for the case k = / and m = OmodL, corresponding to the mainlobe of the ACF of the kth
signature. For any other combination of k,/,m, the right-hand side of (7.47) gives

Multipath replicas of signal

o<~

\

Figure 7.16 Variations of time of arrival of MS signal at the BS
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Ist signature  [41,0 | it |

2nd signature al,Olal,l |

3rd signature al,o| al,ll
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m

max + 1 mmax + 1

Figure 7.17 Signatures formed as time-shifted copies of the initial one

a sidelobe of p;(m), whose level was assumed to be negligible. We have thus proved that
properly offset copies of the initial sequence with good periodic ACF produce the
ensemble where conditions of pseudorandomness (7.43) hold within the full range of
possible mutual signature shifts || < myax. It follows immediately that this ensemble
achieves (when pi;(m) is perfect) or approaches very closely the lowest level (7.40) of
average unwanted effects due to MAI and multipath propagation or, equivalently, the
Welch bounds (7.36) or (7.35). We again emphasize strongly the validity of this state-
ment in the presence of DS data modulation of signatures, since conditions (7.43) are
sufficient to minimize unwanted MAI/multipath effects in this case (see the remark
following (7.40)).>

Example 7.4.1. Consider the system with chip duration A = 1pus, number of users K = 60,
channel delay spread 74s = 20 ps and cell radius D, = 15km. In this case Tmax = 2D./¢ + 745 =
120 us and mnax = 120. The signature ensemble may be arranged starting with the initial
sequence {ay,;} whose period L > K(Mmax + 1) =60 x 121 =7260. Since {ay,;} should
have a good periodic ACF the relevant candidates may be the ternary perfect ACF sequence
of length L=8011, a binary m-sequence (L =2 —1=28191) or a Legendre sequence
(L = 7283). The 60 signatures are then just 60 cyclic replicas of the {ay ;} offset from each
other by 121 chips. Clearly, there is no upper limit on the length of the sequence and it may be
advisable to take it longer with an appropriate increase in signature offset to secure some safety
margin.

The uplinks of the 2G cdmaOne (IS-95) and 3G ¢dma2000 standards present very
good examples of implementation of this version of asynchronous CDMA [69]. A binary
m-sequence of an extremely long length L = 2*> — 1 extended by one symbol is used as
the initial one and the user-specific signatures of all mobiles are just its relevant cyclic
replicas. Pseudonoise properties of an m-sequence along with signature offsets exceeding
possible variations of time of arrival of signal at the BS receiver guarantee a minimal

2Without DS data modulation, perfection of periodic ACF of the initial sequence secures zero level of both
MALI and multipath interference for any m < m,,,, in the described signature construction.
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(see (7.40)) level of average power of MAI and multipath interference at the correlator
output.

7.5 Examples of minimax signature ensembles

The signature ensembles considered in the previous section may be regarded as adequate
only in situations where mutual time shifts of users’ signals are entirely controllable by
the system and may be kept within the predicted range. If this is not the case, asynchro-
nous CDMA based on shifted replicas of the same sequence risks collisions: the signal of
one user may acquire delay, making it indistinguishable from the signal of some other
user. This may be the reason for employing minimax signature ensembles, i.c. those
whose correlation peaks achieve or approach bounds (7.45) or (7.46). Since the correl-
ation peak of a minimax ensemble is maximized over the whole period, its small value
(achievable at the cost of long enough length L) secures the proximity of ensemble
correlation properties to the perfect ones (7.43), guaranteeing pseudorandomness of
signatures.

A survey of all known minimax ensembles would take a lot of space, so we will
confine ourselves to a brief discussion of those that either enjoy wider practical applica-
tion or seem more indicative among others. Readers interested in learning more about
them may consult [9,67,70].

7.5.1 Frequency-offset binary m-sequences

Take a binary {£1} m-sequence {a, ;} of period L = 2" — 1 and use it as a signature for
the first user. The rest of the K — 1 signatures are generated by a symbol-wise multi-
plication of {a ;} with discrete harmonics of frequencies (k — 1)/L,k =2,3,...,K:

2k — 1)i
s :al,,-exp<j¥>,i= =101, k=1,2,.. . K. (7.48)

Thus the squared modulus of the periodic CCF of the kth and /th sequences is:

()|

Consider first the case m = 0modL, i.e. a1 ;a1 i—m = |a, ,| = 1 Then, if £ = [ (7.49) gives
the mainlobe of the ACF of the kth signature, i.e. |Rp Ak(0)| = L. If k # [, the sum in
(7.49) is the sum of all roots of unity of degree L and equals zero (see Section 6.11.2).
Now let m # O0modL. Then according to the shift-and-add property (Section 6.11) of
the m-sequence, a, ;a1,;—m = a1,;—; for some ¢, and the squared CCF modulus:

Za],exp( <"’>>

‘Rp-kl(m s'a}iifm (749)

|Rp,k/(

Zall ,exp( m(k = )




236 Spread Spectrum and CDMA

which is the (k — /)th component of the DFT energy spectrum of the sequence {a; ;}.
Since the energy spectrum of {a; ;} is the DFT of its periodic ACF, and the ACF equals
—1 everywhere except at the zero point, where it is equal to L, we have:

L-1 L1
2nlk—Dm 2n(k—Dm
R )= > Rya ) exp (f %) = (f (T))
0 m=0

m=

The last sum differs from zero and equals L only for k =/, so that collecting all the
results together and passing over to normalized correlations gives:

1,k =1,m=0modL

1
, i,k:l,m;&OmodL
|pp,/cl(m)| =
0,k #1,m=0modL
L+1

T,k#l,m #OmOdL

It is seen now that the squared correlation peak of the ensemble (7.48):

, L4111
Prmax = L2 %Z

i.e. practically coincides with the Welch bound (7.45). Thus, the ensemble under scrutiny
is a minimax one, realizing the optimal asynchronous CDMA mode.

The description of the above ensemble one may find, e.g. in [71], yet earlier and
independently it was used in the global satellite-based navigation system GLONASS
(see Section 11.2). One of the advantages of this signature set versus other polyphase
ones is the possibility of generating signatures by a simple offset of carrier frequency.
Indeed, incrementing the carrier frequency fy by (k — 1)/LA is equivalent to a linear
phase progression between adjacent chips equalling 27(k — 1)/L, which is exactly what is
prescribed by the rule (7.48).

Despite many other minimax polyphase ensembles being known, the binary {£1}
ones are traditionally considered more attractive from a hardware point of view, and the
rest of this section is dedicated to some important examples of binary signature sets.

7.5.2 Gold sets

The following properties of binary {£1} m-sequences may serve to explaining the set
construction found by Gold:

1. If a binary {1} m-sequence {u;} of period L =2"—1 is decimated with the
decimation index d, where d is co-prime to L, the resulting sequence {v;} is again a
binary m-sequence of the same period. To decimate means to pick out every dth
symbol of {u;} and write symbols thus obtained one by one, so that v; = u;;. We call
the sequence {v;} produced this way a decimation of {u;}.
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2. Let the memory n of a binary m-sequence {u;} be odd and in the decimation index
d = 2* + 1 s be co-prime to n. Then d is co-prime to the length L = 2" — 1 of {u;}, the
decimation {v;} is an m-sequence of the same period L, and the non-normalized
periodic CCF R, ,,,(m) of {u;}, {v;} takes only three values:

Ryw(m) € {£/2(L+ 1) — 1,1} = {£2% — 1,1}, m=0,1,...,L—1  (7.50)

3. Let the memory n of a binary m-sequence {u;} be even, but not a multiple of four,
and in the decimation index d = 2* 4 1s be even and co-prime to n/2. Then d is
co-prime to the length L = 2" — 1 of {«;}, the decimation {v;} is an m-sequence of the
same period L, and the non-normalized periodic CCF R, ,,(m) of {u;}, {v;} takes
only three values:

R,w(m) e {£2VL+1—-1,-1} = {iZ&22 -1,-1},m=0,1,...,L—1 (7.51)
Proof of these propositions is rather sophisticated and demands more insight into the
algebra of extension finite ficlds. We leave it aside and refer the interested reader to the
original paper by Gold [72] or other sources (e.g. [9,70]).

Now take a pair of m-sequences, {u;} and its decimation {v;}, satisfying the condi-
tions of item 2 or 3 above and form the ensemble of K signatures by the rule:

Ak,i :u[V,‘_k,k: 1727"'7L

apt1;i = U (7.52)
ap42i = Vi
where i =...,—1,0,1,.... Expressing this in words, we build up L signatures multi-

plying symbol-wise {u;} with cyclic replicas of {v;}, and two more signatures are initial
m-sequences themselves. In total, therefore, we may have up to K =L +4+2=2"+1
signatures. In practice, the {£1} m-sequence is traditionally generated as a binary {0,1}
sequence, i.e. over GF(2) using an LFSR generator, with a subsequent mapping of
elements of GF(2) onto the real pair {31} (see Sections 6.6 and 6.7). Thus, to implement
(7.52) two n-cell LFSRs may be used, generating {0,1} predecessors {u}} and {v/} of {u;}
and {v;}. Instead of multiplication of {u;} with {v;,_;} their predecessors may be added
modulo 2 with a subsequent mapping of the result onto {*1}: w;v; = (= 1),
Figure 7.18 illustrates the implementation of the Gold construction according to the
above description.

LFSR | (1) ‘ Mapping | (%+11)
memory n l | onto {1}
Delay Mapping lagi}, 1<ksL
T k clocks onto {1}

mod2

Mo ] larea)
LFSR Mapping L

memory n {V;'} ‘ onto {+1}

i

Figure 7.18 Generating Gold sequences
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Let us estimate the correlation peak of the Gold ensemble, beginning by calculating
correlations of the first L sequences:

pkl E A iA]ji—m = E Uilj—mVi—kVi—I-m

It is seen that since the case m = 0modL and k = / corresponds to the mainlobe of the
kth ACF, the situation should be analysed where these equalities are not fulfilled
simultaneously. But then either both w;u; ,, and v, xv;_;_,, are just some other shifts of
the initial sequences {u;}, {v;}, or only one of those products is a sequence consisting of
only ones. In the first case we have the CCF of the initial m-sequences {u;}, {v;} taking
on only the three values indicated by (7.50) or (7.51), while in the second we have the
non-normalized ACF sidelobe of one of the sequences {u;}, {v;}, i.e. —1.
Consider now the CCF of {4 ;},k=1,2,...,Land {a;;},I=L+1:

pk/ E Uilli—mVi—k

If m = 0modL, u;u;_,, = 1 and the CCF is simply a constant component of {v;},i.e. —1.
Otherwise u;u;_,, = u;_; for some s and we have the CCF of initial m-sequences obeying
the restrictions (7.50) or (7.51). The same is true for the CCF of {a; ;},k=1,2,...,L
and {a;;},/ =L+ 2.

Finally, the CCF of {a;i;} and {ar42;} is directly the CCF of the initial
m-sequences, while their autocorrelation functions, like those of m-sequences, have
non-normalized ACF sidelobes equalling —1. Collecting all of the results together, we
see that the correlation peak (7.44) of the Gold set is determined by the maximal in
modulus value of the original CCF (7.50) or (7.51). After normalizing it to the length L
we come to the estimation:

2
V2(L+1)+1 2
( ( —;2)+ ) ,n # 0mod2, Z,n;«éOmodZ
pmax: P ~ 4 (7'53)
(2\/L+1+1) —.n=2mod4
~————— n=2mod4 L’

12

with the last approximation corresponding to large length L > 1. As is seen, for any
odd memory n Gold signature ensembles asymptotically (L > 1) attain the Sidelnikov
lower bound (7.46), while for the case of even n not divisible by four their loss in pnax
against this bound is about 3dB.?

3When n = 0 mod4 a Gold ensemble also exists with the same correlation peak as in the case n = 2 mod4, but
with number of sequences smaller by one [67,70].



Spread spectrum signature ensembles 239

Example 7.5.1. Construct Gold sequences of length L = 23 — 1 = 7. An ensemble of that smalll
length is impractical but useful for elucidating the idea. Let us start with the binary {0,1}
m-sequence first met in Example 6.6.1: {uj} = {1,0,0,1,0, 1, 1}. The decimation index d = 3
meets the limitation of item 2 above. Then the decimation sequence is
{v/} ={1,1,1,0,1,0,0}. Symbol-wise summation of {u/} and {v;} modulo 2 gives the
sequence {0,1,1,1,1,1,1}, which after mapping to alphabet {£1} gives the first Gold

sequence {ay,j}={+—————— }. Shifting {v;} to the right by one position and adding
modulo 2 to {u/} gives the sequence {1,1,1,0,0,0, 1}, which after transition to symbols
{£1} gives the second Gold sequence {— — —++ + —}. Six more Gold sequences are

obtained by further shifts of {v/}, adding modulo 2 to {u;} and changing symbols into {+1}.
Along with {u/} and {v/} transformed into {1} sequences, we obtain K=23+1=9
sequences altogether. Checking the value of the correlation peak in this simplest case makes
little sense, since with L =7 no non-normalized periodic correlation, but the ACF mainlobe,
may exceed 5, predicted by (7.53). Building Gold ensembles of greater lengths and checking
their optimality is the subject of Problem 7.40.

Gold ensembles enjoy great popularity in modern CDMA systems. Suffice it to say
that they are employed in the space-based global navigation system GPS for multi-
plexing satellite signals, and in the 3G mobile radio UMTS standard for scrambling
CDMA codes, etc.

7.5.3 Kasami sets and their extensions

The idea of constructing Kasami sets is very close to that described above for the Gold
scheme. Let us decimate a binary {£1} m-sequence {u;} of even memory n = 2/ with the
decimation index d =2"+ 1. Obviously, this d is not co-prime to the period
L=2"-1=Q2"—1)2"+1) of the sequence {u;}, resulting in a decimation sequence
{vi} = {ua} of the period being a factor of L. It may be shown that if {u;} is initialized
so that uy = —1 the ‘short” sequence {v;} is actually a binary m-sequence of period
L; =2" — 1, whose non-normalized periodic CCF with {u;} over the long period L
takes only two values [9,70,73]:

Ryw(m)=+2" —1=+VL+1-1, m=0,1,...,L 1 (7.54)

Then L; Kasami signatures of length L are formed as symbol-wise products of the initial
m-sequence {u;} with L; different cyclic replicas of {v;}, and one more signature is a
‘long’ sequence itself:

aki =uvi—g, k=1,2,... L
ki UiVi—i 1 (755)
ap,+1,; = U;

where i=..., —1,0,1,.... There are K = L; +1=2"= /L +1 such signatures of
period L in total. Of course, again, multiplication of {£1} sequences {u;}, {v;} may be
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Figure 7.19 Generating Kasami sequences

realized as modulo 2 addition of their {0, 1} predecessors {u;}, {v:}, but, unlike the Gold
set, to form the ‘short’ sequence {v}} the necessary length of LFSR is two times smaller:
h = n/2 (see Figure 7.19).

Proof of the minimax property of the Kasami set:

2
VL+1+1 1
Prax :%mzi > 1 (7.56)

is performed based on (7.54), similarly to that of the Gold set, and is left to the reader as
an exercise (Problem 7.28). The comparison of the two binary ensembles shows a
significant gain (6 dB) of Kasami sets in the correlation peak versus Gold ensembles
of the same length in exchange for much smaller (L + 2)/v/L + I ~ /L times) number
of sequences K.*

Example 7.5.2. Construct the Kasami set of length L =2% —1 =15 (h=2,K =L+ 1 =4).
Start by building the binary {0, 1} m-sequence {u}} of length L = 15 based on the primitive
polynomial f(x)=x*+x+1 and initial loading u)=1,u;=u,=uy,=0. We have
{u} ={1,0,0,0,1,0,0,1,1,0,1,0,1,1,1}. Decimation of this sequence with the index
d=2"+1=5 produces the m-sequence of period three
{v/}={1,0,1,1,0,1,1,0,1,1,0,1,1,0,1}. Modulo 2 sums of {uj} and three shifted replicas
of {v/} after transferring to the alphabet {+1} are the first three Kasami sequences:

{ai}={++-—-———— +-—-—+-+}{ai}={+-+-++-+-——++++-} and
{asi}={—-———++—-+++++——++}. The fourth one is {u;} converted into {£1}
symbols: a4 j={-+++—-++—-—+—+ ———}. Direct calculation shows that all their

non-normalized CCF as well as the non-normalized ACF sidelobes of the first three take
on only values —5 and 3, so that p2,, = 1/9 in full agreement with (7.56). A Matlab program
for building arbitrary Kasami sets and verifying their correlation properties is the subject of
Problem 7.41.

The relatively small number of Kasami sequences makes rather remarkable the
method found by Kamaletdinov [74] to extend the Kasami set almost two times without

4Bounds (7.45) and (7.46) may be slightly improved for binary sets allowing for the non-normalized correl-
ations taking on only integer values. As a result it appears that both Gold sets of odd memory and Kasami sets
are strictly (not only asymptotically!) optimal in correlation peak among all binary sets [67,70].
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sacrificing the correlation peak. Let n be divisible by 4: n = 4r, r integer, so that
L=2%_1=16"—1=15,2554095,.... Then in addition to the Kasami set another
binary ensemble of length L and size v/L + 1 exists called the bent sequence ensemble
[9,75] and possessing the same minimax property p2,. = (VL + 1+ 1?/L* ~ 1/L. In
very general terms constructing bent sequences again consists of symbol-wise multi-
plication of two initial sequences: a ‘long’ m-sequence of period L =2* — 1 and some
special sequence based on the so-called bent function. The details of this are tricky
enough and will not be discussed here, but the important thing is that any bent sequence
has normalized CCF with any of the first L; Kasami sequences (7.55) not exceeding by
its modulus the correlation peak of both the Kasami and bent sequence ensembles.
Therefore, it is possible to arrange a composite ensemble including
Ly =2"—1=2"—-1=+L+1-1Kasamiand v/L + 1 bent sequences and possessing
the former correlation peak p2 = (L+ 1)/L? ~ 1/L. The ensemble thus obtained is
unique in the sense that among all known binary ensembles with correlation peak
P2 = 1/L this one has the greatest number of signatures K = 2/L +1 — 1.

7.5.4 Kamaletdinov ensembles

More binary minimax ensembles exist [9,67]; however, some of them differ from the
described ones only in a fine structure of sequences but not in length L, size K and
correlation peak pmax. Against this background the ensembles discovered by Kamalet-
dinov [76] are of a particular interest, covering the range of lengths differing from those
of Gold and Kasami sets.

In order to make the idea easier to understand, we describe a somewhat narrowed
version of Kamaletdinov sets, although with no loss as to the length range or parameters
achievable. To outline the first Kamaletdinov scheme let us take prime odd p > 3 of the
form p = 4h 4+ 3 = 3mod4 and extend the definition of the binary character (x) given
in Section 6.8 to the zero element of GF(p) putting 1(0) = 1 (an alternative ¥(0) = —1
will produce the same final result). Let us treat a position number i of the sequence
symbol as an element of GF(p), i.e. being reduced modulo p, and form p + 1 p-ary
sequences di ; over GF(p) (i.e. with elements from this field) as follows:

i+at o k=12,...,p—1
dii=1R i+a, k=p (7.57)
i+a  k=p+1

where all arithmetic is that of GF(p),a is a primitive element of GF(p) and
i=...,—1,0,1,.... One may see that every sequence in (7.57) is formed as a sum of
sequences of co-prime periods p and p — 1 (o”~! = a® = 1), and therefore has the period
L =p(p —1). Now perform a mapping of sequences (7.57) onto the binary alphabet
{%1} using the extended binary character:

ari = Y(d;), k=1,2,...,p+1,i=...,—-1,0,1,... (7.58)
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The binary set thus generated has parameters:

+3)°
L:p(p_l)vK:p+17prznax:(pL—2) (759)
Length L may be made large enough only by a proper choice of p (p > 1), in which case
(@ +3)?/L=(p+3)?*p*—p) ~1and P2 — 1/L, showing after comparing with (7.45)
at least asymptotical optimality of the ensemble in the correlation peak.

Example 7.5.3. Let p = 7. Direct verification confirms that o« = 3 is a primitive element in GF (7).
Then the sequences {o/} and {« '} are both of period p —1=6:{...,1,3,2,6,4,5,1,3,...}
and {...,1,5,4,6,2,3,1,5,...}, respectively. Combined modulo 7 with the sequence
{it={...,0,1,2,3,4,5,6,0,1,...} of period 7, as prescribed by (7.57), they produce
K = p+1 =8 7-ary sequences of period L = p(p — 1) = 42. For instance, the first of them is
{d: i} = {221136110025006614665503554462443351332240}. Replacing their 7-ary
elements by the extended characters according to the rule (0) = ¢(1) = ¥(2) = ¥(4) = 1,
and (3) = ¢(5) = ¥(6) = —1 converts the sequences into 8 binary ones, e.g. {a; i} =
{++++-——+++++—-4++—-——F++—-————+———++—F+++—-——+——++++}.
It is rather tiresome to compute their ACF and CCF ‘by hand’, and Problem 7.42 provides
Matlab software to support it.

The second Kamaletdinov construction exploits the p-ary (p = 4h+ 3 = 3mod4)
linear sequence {cf} obtained by decimation with the index d = p — 1 of p — 1 shifts
{disr}, k=1,2,...,K = p—1 of the p-ary m-sequence {d;} having memory n =2, i.e.
length p* — 1. Since d divides p*> — 1 the sequence {c*} = {ds.«} has the period
(> — D))(p — 1) = p+ 1. Now let us build p — 1 sequences over GF(p):

=i+ k=12,...p—1,i=...,-1,01,..., (7.60)

and map them onto the binary alphabet {£1} according to (7.58). This generates the
ensemble with parameters:

p+1)7° 1

L=pp+1), K=p—1, anasz:p—z (7.61)
Again, for the case of long lengths (p > 1) the ratio (p + 1)*/L = (p + 1)*/(p* + p) — 1
and pﬁm — 1/L, demonstrating at least asymptotical optimality of the ensemble.

Example 7.5.4. This time there is no exclusion for p = 3 and the p-ary m-sequence {d;} of
memory n = 2 and length p? — 1 = 8 may be formed by the primitive polynomial over GF(3) of
the second degree f(x) = x? + x + 2, or equivalently, by a recurrent equation d; = 2d;_; + dj_».
The initial loading dy = 1,d; = 0 produces the sequence {d;} ={...,1,0,1,2,2,0,2,1,1,
0,...}. lts shifts decimated with index d = p — 1 = 2 transform into two sequences of period
4:{...,1,1,2,2,1,1,2,2,...}and {...,0,2,0,1,0,2,0, 1, ...}. After symbol-wise addition with
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the sequence {i} ={...,0,1,2,0,1,2,...} they give K =p—1=2 sequences of period
L=pp+1)=12:{1,2,1,2,2,0,2,0,0,1,0,1} and {0,0,2,1,1,1,0,2,2,2,1,0}. The last
step, replacement of their elements by extended characters (0) = ¥(1) = +1,9(2) = —1,
produces the Kamaletdinov set of two binary sequences of length L=12:{ay;} =
{+-+-—+—-+++++} and {&,;} ={++—-++++— — — ++}. Their ACF and CCF
are not difficult to compute by hand (or with the aid of the program of Problem 7.43), coming
to p2, = 1/9 in full agreement with (7.61).

Table 7.1 Examples of binary minimax signature sets

Ensemble Length L Size K Squared correlation
peak p2..

Gold 2" — 1,n # 0 mod4 L+2=2"+1 WAL 5 644
7,31,63,127,511,1023 CVIIDHY 4 even

Kasami 2" — 1, n even VLF¥1 (7*L+L£“) -1
15,63,255,1023

Union of Kasami and 2" — 1,n = 0 mod4 2VL+1-1 (7VL+LW -1

bent sequences 15,255

Kamaletdinov 1 p(p — 1), (p = 3mod4, prime) p + 1 = VL (”JL'—;Y -1
42,110,342,506,930 — VL

) . _ . _ VALi1-3 1’

Kamaletdinov 2 p(p+1), (p = 3mod4, prime) p— 1 =4I @OF 1

12,56,132,380,552,992 — VL

To prove the propositions on the correlation peak of the ensembles above, the theory
of quadratic equations in finite fields is necessary. Leaving this sophisticated issue aside,
we refer the interested reader to the original paper [76].

Let us summarize now our knowledge on the binary minimax ensembles in Table 7.1,
presenting length (listing all the lengths of existing ensembles within the range
7 < L <1023), number of signatures and squared correlation. The table is expressive
enough as regards the significant contribution of Kamaletdinov sets: the number of their
lengths in the considered range is 11, compared to 6 for Gold and 4 for Kasami sets.

Problems

7.1. Ina DS CDMA system based on periodic binary signatures and BPSK data modula-
tion, a user transmits the signal {+ + - — -+ - —-—+++-+++—-———+ -}
covering more than two data bits. What is the signature code of this user (the
common sign of all symbols being immaterial) if data bit duration equals signature
period?

7.2. In a DS CDMA system based on periodic binary signatures and BPSK data
modulation, a user employs the signature code {+ + + — — + —}, data bit duration
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7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

being equal to the signature period 7A. Due to the failure of timing recovery in the
receiver, the despreading reference lags behind the received spreading signal by
one chip. What is the result of data demodulation when a stream of zero data bits
is transmitted?

How will the presence of amplitude modulation in an APSK signature affect the
structure of a DS spreading receiver? Will the despreading in this case return a
data symbol to the form characteristic of a non-spread transmission?

A DS CDMA system uses QPSK for data transmission at the rate 64 kbps and
spreading code with chip rate 1.28 megachips per second (Mcps). Find the
spreading factor and bandwidth occupied by the system.

An FH CDMA system uses a 4-frequency spreading signal of length
N =4:{1,4,2,3} and 4-FSK data transmission (each couple of bits is transmitted
by one of 4 frequencies). The transmitted bit stream is 00101101. Draw a possible
time—frequency array of the transmitted signal if one data bit covers two chip
durations. What sort of FH is used: fast or slow?

An FH CDMA system uses a 4-frequency spreading signal of length
N =4:{1,4,2,3} and 4-FSK data transmission (each couple of bits is transmitted
by one of 4 frequencies). The transmitted bit stream is 10110100. Draw a possible
time—frequency array of the transmitted signal if one signature chip covers two
data bits. What sort of FH is used: fast or slow?

A fast FH CDMA system uses 16-frequency spreading signal and 4-FSK data
modulation. The chip duration is 10 ps. Estimate the minimal bandwidths of spread-
ing and transmitted signals if chips of different frequencies should be orthogonal.
A synchronous CDMA system with BPSK data transmission at the rate
R = 9.6kbps should be organized within an available bandwidth W, = 76.8 kHz.
How many users can it accommodate to preserve the optimality of a single-user
receiver? Design an appropriate binary signature set. How will the number of
users change if BPSK data transmission is replaced by QPSK, 8-PSK or 16-QAM?
If any of them increases the number of users, at what cost does this happen?

A synchronous CDMA system serves 36 users employing orthogonal signatures of
equal energy per bit. How many new signatures (bandwidth and user data rate
being fixed) of the same bit energy can one add to the existing ones without
sacrificing minimum distance between different group signals?

What is the minimum length of synchronous signatures allowing a no smaller than
33% increase of the number of users in the oversaturation scheme (7.23)?

Add a supplementary signature to the four Walsh functions of length N = 4. Is
the supplementary signature binary? If not, can you modify the primary signa-
tures to make the supplementary one binary?

K = (4N — 1)/3 synchronous signatures are built according to the oversaturation
scheme (7.23). Is it a good idea to use them for a K-user CDMA, if only a single-
user receiver is acceptable?

Find the minimal length potentially allowing MAI power per signature per con-
ventional receiver in a synchronous oversaturated CDMA no higher than —30dB
relative to the useful signal power, if the number of users is 101.

. Prove that three or more binary sequences of length N cannot be orthogonal to

each other unless their length is a multiple of four.
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7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.
7.29.

Can an oversaturated Welch-bound set of K = 21 binary signatures exist? What
about K =22, 23 or 32?

Outline the procedure of building a Welch-bound set of K = 256 binary sequences
of length N = 100.

(Karystinos and Pados [64].) Prove that for an oversaturated set of an odd number
K of binary signatures, the Welch bound (7.30) rises to:

Build an ensemble of K = 15 binary signatures of length N = 12 achieving the
bound of the previous problem. Generalize the procedure to K = 2" — 1 signa-
tures (K > N).

What is the minimum period of K = 11 asynchronous signatures which does not
prohibit obtaining average squared correlation between all their cyclic replicas
within —20 dB?

Consider random signatures meeting (7.37). Prove that multiplication of signa-
tures by data symbols (data modulation) does not disturb (7.37), provided data
symbols are independent of signature symbols.

Prove that if two sequences of the same least period L both have perfect periodic
ACEF, their periodic CCF cannot equal zero for all mutual shifts.

Find the maximal number of asynchronous signatures of the period L = 100
which does not prohibit retaining the correlation peak below —23 dB.

K = 50 users may move freely within a zone of radius D, = 15 km. The maximal
delay spread of the channel between a user and central station 74 = 20 ps.
Bandwidth allocated to the system is 2 MHz. Find the minimum lengths of the
binary m-sequence and Legendre sequence allowing arranging time-offset sig-
natures for the link “‘user—central station’. Find the minimal length of the perfect
PACEF ternary sequence of memory 3 matching this problem.

In Section 7.5.1 an m-sequence is used to generate a frequency-offset signature set.
Does any other binary minimax sequence (e.g. a Legendre one) allow the same
way of obtaining a signature set with squared correlation peak around 1/L? If not,
why?

A CDMA system operates at carrier wavelength 4 cm with signature chip duration
1 ps. The length of signatures should be L =2 —1 = 1023. What maximal
number of frequency-offset signatures may be arranged, if the user’s velocity
ranges up to 144 km/h?

Find all decimation indexes fitting the Gold algorithm for lengths 63, 127, 511,
1023.

A signature ensemble is necessary to serve K = 100 users with correlation peak no
greater than 0.064. What is the minimal length of the Gold ensemble meeting these
demands?

Prove the minimax property (7.56) of Kasami sets.

A signature ensemble is necessary of size no smaller than 31 with correlation peak
below —23dB. Find the ensemble of minimal length among the known binary
ones matching this requirement.
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7.30.

A signature ensemble is necessary of size no smaller than 24 with correlation peak
below —25dB. Find the ensemble of minimal length among the known binary
ones matching this requirement.

Matlab-based problems

7.31.

7.32.

7.33.

7.34.

7.35.

Write a program illustrating the principle of DS spreading—despreading (see
Figures 7.3 and 7.4).

Figure 7.20 illustrates Matlab simulation of fast FH spreading using the example
of 6 chips per one bit duration, the 4-frequency signature {F;} = (1,3,2,1,0,3)
and binary FSK data modulation (frequency offset of bit one f; = 4). Write a
program simulating fast FH spreading—despreading for a range of parameters.

B(t)

Fs(1)

Sfd*B(1) + Fs(1)

Hmuwnnm.m TN
HH! AR

0 1.0 1.5 2 0 2.5 3.0
t'Th

il

SH(t)
=

Figure 7.20 Fast FH spreading

Write a program calculating the squared distance between two group signals
(7.11) using equation (7.15) for an arbitrary given synchronous signature set and
binary data transmission. Test it for an orthogonal signature set (e.g. Hadamard
matrix rows), varying randomly the patterns of differences &.

Modify the program of the previous problem to calculate the minimum squared
distance in a constellation of group signals (7.11) for an arbitrary set of K
synchronous signatures and binary data transmission. Up to which set sizes K
does the program run in a reasonable time?

Write a program generating an oversaturated signature set according to the
scheme (7.23) for lengths N = 4/ with arbitrary /. Take the /th Kronecker degree
of Hy from Example 7.2.1 as the primary signatures. Make sure that all the
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supplementary signatures are binary. Use the program of Problem 7.33 for a spot
check of the distances between group signals.

7.36. Write a program simulating multiuser reception in oversaturated synchronous
CDMA. Steps to be done:

(a)
(b)
©
(d)

(©
()

(2
(h)

Form K = 21 binary signatures as in the previous problem.

Form a random K-dimensional vector of bits transmitted by K users.
Modulate the signatures by bits in the BPSK manner and form a group signal.
Add the Gaussian noise to the group signal, setting the noise standard
deviation to something like the signature amplitude.

Plot the observation obtained.

Try all possible 2% bit patterns, each time forming a candidate group signal
and measuring the Euclidean distance from it to the received observation.
Give out the decision on the bit pattern providing the closest candidate group
signal to the observation and check whether all bit decisions are correct.
Run the program, increasing the noise level, and comment on the results.

7.37. Write a program computing total squared correlation and average squared correl-
ation per signature pair for an arbitrary synchronous signature set.

7.38. Write a program constructing an oversaturated binary Welch-bound set of K = 2"
signatures of arbitrary length N < K. Use the set obtained in simulating K-user
synchronous CDMA. Steps to be done:

(a)
(b)

©
(d)

(e)
)
(8)

Construct a Hadamard matrix of size K.

Discard N — K rows in it and use the columns of the truncated matrix as
signatures.

Form the K-dimensional vector of users’ data, and use it to manipulate
signatures and form a group signal.

Simulate K single-user receivers, each calculating the correlation of the
received group signal with an appropriate signature and taking the decision
according to the polarity of the correlation.

Compare the K-dimensional vector of decisions on the data with the one
really transmitted and find the number of erroneous bits.

Repeat items (¢)—(e) 1000—10 000 times and find the bit error probability per
user.

Run the program for n =5,6,7,8 finding each time the minimal length N
(maximal oversaturation K/N) where errors do not still occur.

7.39. Write a program simulating an asynchronous CDMA employing time-offset
replicas of the same binary m-sequence. Recommended steps:

(a)

(b)
©

(d)

Set the maximal number of users K =20—25 and the maximal delay in
number of chips mpy,x = 80—100.

Form the binary {£1} m-sequence of length L > K(mmax + 1).

Take as K signatures K cyclic replicas of the m-sequences, each delayed from
the previous by mim,x + 1.

Pick out K, first signatures (active users) and manipulate all but the first by
random independent bits, bit duration fixed within N = 160—200 chips.
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7.40.

©

)

(2)
(h)

(M)

Shift all manipulated signatures but the first randomly and independently
versus their initial versions within the range [0, 7,,x] and add their sum to the
first signature to come to a group signal.

Imitate a single-user receiver for the first user, calculating the correlation
within one bit of the first signature and the group signal.

Demodulate the first user bit and compare it to the true one (which is zero).
Varying the number of active users, e.g. K, = 5, 10, 20, . .. repeat items (d)—(g)
1000-5000 times for every K,. Calculate an experimental floor SIR at the
correlator output and the bit error probability and compare them with the
predictions ¢? = N/(K — 1), P, = Q(qr).

Plot 5-7 overlapped example realizations of a group signal and cumulative
sum at the receiver integrator output (Figure 7.21 presents example plots for
K =25, K, =20, N =169, mp,x = 80).
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Figure 7.21 Group signal and receiver integrator output in asynchronous CDMA

Write a program generating the Gold set and outputting the histogram of the
values of the periodic ACF and CCF of its members. Figure 7.22 presents example
plots for N = 2° — 1.

(a)
(b)

(©

Generate a binary m-sequence of a proper memory n > 5.

Decimate it in an appropriate manner to come to the second initial
m-sequence.

Form 15-20 Gold sequences as prescribed by (7.52), including initial
m-sequences.
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Figure 7.22 Periodic correlations and histogram of correlations for the Gold set of length 31

7.41.

7.42.

(d) Calculate their periodic ACF and CCF.

(e) Plot ACF of one of the initial m-sequences, ACF of some other Gold
sequence, CCF of two initial m-sequences, and CCF of another pair out of
the Gold sequences obtained.

(f) Plot a histogram of all unwanted correlations (CCF values and ACF
sidelobes).

(g) Output the correlation peak and compare it with the theoretically predicted
one and the lower bound.

(h) Run the program for relevant odd and even values n and interpret the results.

Write a program to investigate Kasami sets. The procedure may be in general
similar to that of the previous problem, but now it makes sense to calculate the
correlations between all (not only selected) sequences.

Write a program to investigate Kamaletdinov sets determined by (7.57)—(7.58).
Figure 7.23 present the plots for the case p = 11. Recommended steps:

(a) Set p = 3mod4, find a primitive element « in GF(p) and its inverse a~'.

(b) Form K = p+ 1 sequences over GF(p) as defined by (7.57), all arithmetic
being of GF(p).

(c) Map the sequences obtained onto the binary {#1} alphabet according to
(7.58).
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Figure 7.23 Periodic correlations and histogram of correlations for Kamaletdinov set of
length 110

7.43.

(d) Calculate the periodic ACF and CCF of all the sequences of the previous
item.

(e) Plot ACF of sequences {ax ;} and {a; ;}.

(f) Plot CCF of this pair and pair {ag—_1 ;}, {ax i}

(g) Plot a histogram of all unwanted correlations (CCF values and ACF side-
lobes).

(h) Output the correlation peak and compare it with the theoretically predicted
one and the lower bound.

(i) Run the program, varying p, and interpret the results.

Write a program to investigate Kamaletdinov sets determined by (7.60). Run it
varying p, plot selected periodic ACF, CCF, and histograms of unwanted correl-
ations. Register the correlation peak, and compare it to the theoretically predicted
one and to the lower bound.
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DS spread spectrum signal
acquisition and tracking

8.1 Acquisition and tracking procedures

One of the most characteristic problems in spread spectrum technology is measuring the
time of arrival and frequency of the received signal. In the systems where spread
spectrum signals are used for ranging and measurement of object motion parameters
(radar, sonar, navigation), time—frequency estimation is the main task. In spread spectrum
communications it is the core of the timing recovery procedure. In fact, to correctly
demodulate the transmitted data a receiver of any digital communication system
should know with sufficient accuracy the borders of symbols, frames etc. in the
received datastream. In other words, the local receiver clock should be properly
synchronized with the received datastream. In spread spectrum systems a particularly
precise synchronism is demanded, since time-mismatch between the received spreading
signal and its local despreading replica (the reference) exceeding or equal to chip
duration, will completely destroy the despreading and subsequent data demodulation
(see Section 7.1). Therefore, the synchronization-related tasks of a receiver include
preliminary (to starting the data recovery session) alignment of its own despreading
reference with the spreading code of the arriving signal and maintaining rather accurate
synchronism between them over the whole subsequent data reception time. Certainly,
from the theoretical point of view, the synchronization procedure is not anything
new: to align a local reference with the received signal one has just to measure the
time—frequency shift of the received signal against the local clock. Then, if necessary,
the receiver oscillator may be time—frequency corrected and thereby synchronized with
the received signal.

The optimal (ML) strategies of measuring time delay and frequency were thoroughly
discussed in Sections 2.12-2.14. In practice, however, their ‘pure’ realization very often
runs into serious obstacles. The initial (e.g. when the receiver is primarily activated) bias

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
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of the local clock in time and frequency against the received signal may appear rather
large. Among the factors causing such a mismatch are autonomous operation of the
transmitter and receiver clocks, the wide range of variations of path length between
the transmitter and receiver, Doppler frequency shift due to their relative motion etc.
In such circumstances direct implementation of the ML rule sometimes proves to be
excessively demanding or even prohibitive in terms of resource consumption, as is
demonstrated by the example below.

Example 8.1.1. The ranging C/A signal of the GPS (see Section 11.2) has period containing
L = 1023 chips or in real time LA = 1 ms. To solve the navigation task, one should measure the
time position of the signal with accuracy no worse than a split microsecond, for instance 0.1 of
chip duration A. If the receiver is initialized with no prior knowledge of a local clock mismatch
versus the signal, the uncertainty of the signal delay spans one period, i.e. LA. Turning to the
correlator-bank receiver of Figure 2.18, one can see that its realization means implementing
10230 parallel correlators. Switching to the matched filter structure (Figure 2.19) does not
make the problem easier: such a filter with memory LA, digitally realized, would have to operate
with at least 10 samples per chip, performing 1023 summations during one sampling interval
(smaller than 100ns). Involving such an enormous hardware or software resource for
performing only one of many tasks of the receiver does not look commercially justified, at
least considering current technological tendencies.

In order to avoid implementation difficulties, the practical procedures of time—
frequency estimation in a wide uncertainty region are often performed in the form of
two successive steps. The first, called acquisition (code acquisition, search), performs a
coarse measuring of the necessary parameters and provides preliminary estimates used
by the second step, called tracking. This second step, typically performed by special code
tracking and frequency tracking loops, delivers fine time—frequency estimations used
further immediately by a local reference generator to align the despreading signal with a
received spreading code. But in order to capture synchronism (pull-in) and enter the
tracking state, the tracking loops need an initial targetting, e.g. knowledge of a received
signal timing within one chip duration or so. This, as was already pointed out, is the task
of the acquisition stage, reducing the primary uncertainty of signal parameters to that
demanded by a tracking loop. Comparatively soft requirements towards the accuracy of
estimates at the acquisition step allow cutting down the amount of calculated statistics
and simplifying the implementation. To come back to Example 8.1.1, slackening the
demands on the necessary precision of time measurement to one chip duration means a
ten times smaller number of correlators in the scheme of Figure 2.18 or ten times lower
processing speed in the matched filter structure. Yet the main resource-saving technique
exploited by acquisition is a partial or complete replacement of parallel computations of
the decision statistics by a serial one.

To explain this let us treat unknown delay 7 and frequency shift F of the signal as
signal coordinates on the time—frequency plane. Suppose that the initial uncertainty
ranges of 7 and F are 7, and F,, respectively, and that as a result of acquisition those
ranges should be reduced to 7 and 6F. Then, as Figure 8.1 shows, signal position is
within one of M 67 x 6F rectangular cells, where M = (F,7,)/(6Fé7). The acquisition
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Figure 8.1 Search zone and signal position on the delay—frequency plane

should find out which one of M cells contains the signal, i.e. test M competitive
hypotheses (see Section 2.8). If the optimal testing procedure were used, M correlations
(2.74) would be computed in parallel for values 7 and F corresponding to cell centres,
and then the decision made in favour of 7, F corresponding to the highest correlation.
Typical acquisition procedures, however, utilize the long presence of signal at the
receiver input, which permits calculation of only several (not all M) correlations at
a time. If none of them is large enough, the decision is taken that there is no true cell
(i.e. containing the signal) among those tested and the search continues by examining
another group of cells. The procedure goes on this way until some correlation is recognized
as large enough to suggest that the corresponding cell is true. This terminates the
acquisition, after which a tracking loop starts working, targetted by the estimations
obtained. Remarkable research has been done concerning acquisition algorithms and
strategies (see, for example, the bibliography in [77]). Below we will limit ourselves to only
very brief discussion, starting with the simplest version of acquisition.

8.2 Serial search
8.2.1 Algorithm model

In a serial search only one cell at a time is tested, i.e. only a single correlation is
calculated of the observation and a local signal replica, having some specific time-
frequency shift. The correlation magnitude is then analysed in order to decide whether
the cell is true or false. Various criteria may serve to take the decision. For example, the
search may continue until all the cells inside the uncertainty region (see Figure 8.1) are
tested, all the time storing in memory the maximal correlation observed up to now along
with the values of 7, F' corresponding to it. Then, after the last cell is analysed, the cell
believed to be true is known automatically by its coordinates kept in memory, and all to
be done is just reading them out. This strategy is equivalent to implementing the ML
estimation rule, but calculating the necessary correlations not simultaneously but
sequentially in time for successively arriving signal segments.

Still more typical of practical receivers is another version of a serial search, where the
currently found correlation magnitude is just compared with a threshold [6,9,77]. If the
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Figure 8.2 Serial search of a spreading code phase

correlation is larger than the threshold the decision is made that the current cell is true
and the search finishes. Otherwise the search system examines the next cell and so forth.

From the point of view of performance analysis it does not matter how many
parameters are unknown and to be estimated in the course of searching: both time
and frequency (or whatever else) or some one of them. The only material thing is
the overall number of cells to be checked. Yet to make further deliberations more
transparent we will treat them as though an acquisition consists in only measuring the
time delay of a received signal, the frequency being known a priori with sufficient
precision. Figure 8.2 presents the structure running a serial search in this case. When a
spreading code is periodic, the maximal uncertainty time zone may span only one
period and all greater delays are reduced to fall within one period. In this light the
name ‘phase’ is also appropriate as a synonym of delay of a periodic code [2,6,9] and
transferring from one cell to the next in the uncertainty region means just changing the
phase of the local code replica. When a current correlation is below the threshold the
search control logic orders the local generator to increment the phase of the code
replica s(f — 7) at its output by one chip or a split chip, and the procedure goes over to
examining the next cell. If the current correlation exceeds the threshold the control
logic signals that acquisition is finished and the code generator keeps the code phase
corresponding to the cell declared to be true. In the following sections we discuss the
performance of this algorithm based on the analysis of [78] and referring the reader
inclined to learn more to [6,9,77,79-81].

8.2.2 Probability of correct acquisition and average number of steps

To simplify the analysis (still with no compromise of the basic regularities), let us assume
that the local code replica is shifted versus the received signal by an integer number of
chip durations. Then with L being the code period there are L possible code phases
altogether, only one of which is true. To put it differently, there may be at most L search
cells and every transition from one cell to the next means incrementing the code phase
by one chip duration. Very often checking all of these L cells in the course of a search is
needless thanks to reliable prior information shortening the search region to only M of
L cells. Let us begin with an assumption that the search starts with the least favourable
empty cell inside the uncertainty region, i.e. most distant from the true one. Figure 8.3
illustrates this premise: the first reaching of the true cell (black circle) takes place only
after passing safely over M — 1 empty cells (white circles).
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Figure 8.3 A serial search of a code within the uncertainty region of M cells

In order to achieve a reliable distinction between correlation levels in the false and true
cells the search system should calculate the correlation in every cell over a sufficient time
interval: dwell time. Whatever dwell time and threshold are set up, decisions on whether a
cell is true or false cannot be absolutely faultless. One sort of possible error is a false alarm
(see Section 3.2), i.e. declaring an empty cell true. When that happens, the search
procedure finishes in the false cell, and it is natural to try to keep the probability of such
an event low enough. On the other hand, dwelling in a true cell may also end up with
non-zero probability by the wrong decision: missing the signal and transition to the next
(empty) cell, which had been already examined earlier. This makes the search procedure
cyclic: if it is not finished after the first scanning of the uncertainty region, a second one is
performed and so on, each of the successive restarts initiating a new search cycle. Below
we accept that the sought signal is present at the receiver input permanently so that the
number of possible cycles has no upper limit. It is seen from Figure 8.3 that if the search
system comes safely to a true cell there are two possible routes from it: correct decision
(and finishing search) with detection probability p,; or missing signal with probability
1 — p,. The latter event entails only continuing the search by the next cycle of testing and
has no negative consequences except for the extra time spent before the acquisition.
Dwelling in an empty cell also has two possible outcomes: correctly declaring it false,
accompanied by transferring to the next one with probability 1 — p;, or recognizing it true
with false alarm probability p,. In comparison to signal missing, this second error is more
catastrophic, since the wrong code phase delivered by the search means that all the
operations performed by the receiver afterwards are useless. To secure low risk of this
event every decision that the code phase is found is typically rechecked at the cost of
additional dwelling (see the next section) in the suspicious cell, but nevertheless some
non-zero probability remains of terminating the search in the wrong cell.

Let us call a search step every dwelling in some cell ending with the decision to either
prolong or stop the search. It is seen directly from Figure 8.3 that when the search starts
at cell number one (most remote from the true one) it may stop at the sth false cell
(t=1,2,...,M — 1) after mM + t steps, and in the true cell after mM + M = (m+ )M
steps, where m =0, 1, ... is the number of complete ‘idle’ search cycles, i.e. passages
across the uncertainty region preceding the final (2 + 1th) cycle, at which the search
stops in either a false or true cell. Then reading Figure 8.3 as a flow chart produces the
following equation for probability p(s) of finishing the search after s steps:

m
pr(1—p)! [(1 —pa)(1 —pf)M”} Cs=mM A4 t,0=1,2,... . M—1

” (8.1)
pa(l —p)™™! [(1 —pa)(1 _Pf)M_l} L s=mM+ M

p(s) =
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where m = 0, 1, .... The events (and only those ones) whose probabilities are expressed
by the second row of (8.1) all imply finishing the search with a correct estimation of code
phase. Therefore, the overall probability P.; (the index ‘1’ indicates that the search starts
from the first cell) of correct search outcome (correct acquisition) is just the sum of all
these probabilities over the whole range of m, i.e. the sum of the geometric progression
with the ratio (1 — pg)(1 — p)™ "

SRS ik pa(l = p)"™!
Pa=pa(l=p)" ™'Y |(1=pa)(1 = p)" | = ' - (82
mz:;){ } L= (1=pa)(1 = pp)"™!
Another important parameter is the average number of steps 5; of the search:
o0
5= spls) =mM +1 (8.3)
s=1

where again index ‘1’ points at the starting cell number one. In equation (8.3) 77 stands for
the average number of idle search cycles running before the final one, while 7 denotes the
average number of steps within the last cycle finishing in either a false or true cell. The
probability of an individual cycle being idle is a product of the probabilities of non-
stopping in all M — 1 empty cells and a unique true cell, i.e. (1 — py)(1 — pf)M -, Conse-
quently, the probability p(m) of exactly m idle cycles elapsing before the search stops is:

pom) = [1= (1= p) (1 =) ][ =p) (1 =p)" [ o =01, (3.4)
As is seen, probability distribution p(m) obeys the geometric law, whose expectation is

well known, yet bearing in mind further needs we show how it is found through the
generating function [14,66]:

The derivatives of the generating function at the point z = 1 allow calculating moments
of an associated random variable. In particular:

denlD)  _ S ) =
=1 m=0

dz
For a generic geometric distribution p(/) = a/(1 —a),/ = 0,1, ...; 0 < a < 1, the gen-
erating function is obtained by summation of a geometric progression:

> l1—a
11
= 1 — =
gi(2) ,EZO za'(l —a) 7
so that after differentiation:
=g _ _a (8.5)
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Comparing a generic geometric law with distribution (8.4) shows readily that substitu-
tion a = (1 — py)(1 —pf)M*1 in (8.5) produces the desired expectation 7

— (1=pa) (= pp)M!

U p) ()™

(8.6)

To find the second term 7 in (8.3) note that the probability of terminating a final cycle in
an empty cell number ¢ regardless of how many idle cycles preceded may be found by
summation in m of all probabilities of the first row in (8.1) (see also Figure 8.3), while
the probability of safely reaching the unique (Mth) true cell and stopping in it (again,
regardless of the number of preceding idle cycles) is just (8.2). Thus, the probability
distribution p(f) of the number of steps ¢ within the final cycle is:

00 —1
N pr(1—pp)'
pr(1=pp)" 1=pa)(1=p)" | = =y
2;;{ 1= (1= pa)(1 —pp)"!
pt) = =1,2,..., M —1
pa(1—p))"!

P, = =M

(- p)(1—p

The generating function of this probability distribution is:

M o M1
: — Z(1—pp) +2" Py
g (1= pa)(1 = p)™™! ;
_ Py z—zM(1 PJ)M_1+ZMP1
L—(1=pa)(1—p)™t 1=z(1=py)

Differentiating g,(z) at the point z = 1 gives, after some elementary algebra:

1= ()" = Mpy (1= pa) (1~ pp)™! (8.7)

prll = (1= pa)(1 = p)™™]

Then using (8.6) and (8.7) in (8.3) ends in the average number of steps:

5 = L= —p)” (8.8)

prll— (1= pa)(1—pr)™ "]

Let us now abandon our initial assumption about a starting cell and consider how
beginning the search in a cell number r affects the results above. In this case the partial
cycle (attribute it as number zero) arises spanning M — r empty cells plus one true cell.
The following events are possible within this cycle: finishing the search at a false 7th
cell with probability po(t|r) = ps(1 — py) "t =r,r+1, ..., M — 1, finishing it in the
true cell with probability po(t = M|r) = ps(1 — pf)M ~", and, lastly, missing the signal and
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continuing the search from the first cell with probability Py,,(r) = (1 — pa)(1 — pf)M -
Then the overall probability of the correct acquisition when starting from the rth cell is:
M—r

pa(l —pr)
1= (1=pa)(1—p)™"!

The average number of steps is recalculated in the same way. When the search termin-
ates at the rth cell of zero cycle the number of steps passed is t — r + 1, but if the signal is
missed, 5; extra steps on average will be added to the M — r + 1 passed already. Thus,
the average number of steps 5,, when starting from an arbitrary (rth) cell, is:

P, :po(l = er) + POm(r)Pcl = (89)

Sp= (1 =r+Dpo(tlr) + (M — r+ 1 451) Pou(r) (8.10)

1=r

The first sum here, after changing the summation index to i = ¢ — r + 1, becomes:
M-
Z i(1=p)~ '+ (M —r+ Dpo(t = M|r) (8.11)

where the first term is easily evaluated through the generating function, as was done in
the derivation of (8.7):

Ai:r =)t = L= (L=p)™"™" = (M = r+ Dpr(1 = pp)™~

= vy

Using this in (8.11) and (8.10) along with equality po(t = M|r) + Pou(r) = (1 — pp)™~
after a plain algebraic treatment gives:
1 — (l _pf)MfrJrl

1 - PL'r Pz?r
Sy = - —|—§1P0m(r) = +—
Py Pr Pd

(8.12)

Certainly, under substitution » = 1 (8.9) and (8.12) turn into (8.2) and (8.8), respectively.

Now, knowing the prior probability distribution py(r) of an initial cell number r we may
average (8.9) and (8.12) over all initial cells within the search region. For a uniform a priori
distribution po(r) = 1/M,r = 1,2, ..., M this operation results in the following overall
average probability P, of a correct acquisition and average number of steps 5 of the search:

_ pall — (1 *pf) ] 8.13
Z ~ Mpl —(1 —pa)(1 = pp)" ] 513

- 1 _FC E
= (8.14)

8.2.3 Minimizing average acquisition time

Calculation and comparing with a threshold of correlation for every candidate code
phase means dwelling for some finite time at every analysed cell. In general this time
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may be random, and, moreover, will depend on whether a current cell is true or false.
We, however, limit ourselves to considering here only the simplest version of a serial
search assuming fixed dwell time T;. Some other options will be briefly discussed in the
next section. Then the average time T, spent by the search system is just a product of the
average number of steps and dwell time: T = 57. It is evident that, signal power fixed,
the longer is the dwell time 7; the more reliable may be the decision on whether the cell
is true or false, i.e. smaller values of the false alarm (p;) and signal miss (1 — py)
probabilities per cell may be secured.

Certainly, the reliability of the search characterized by the probability of a correct
acquisition P. should not be worse than some predetermined quantity. As (8.13)
shows, the same value of P, may be achieved via different combinations of the
probabilities py, ps per cell. This fact underlies the opportunity of minimizing average
search time by varying one of the parameters p; or p,, while the probability P, of the
correct acquisition is maintained constant. The physical nature of such optimization is
pretty clear. Suppose we impose on the detection probability a strict requirement of
being very close to one. This means that the search will almost certainly succeed in
only one (initial) cycle; however, to secure high detection probability the dwell time at
every cell has to be long, so that the search drifts slowly toward the true cell and
average acquisition time 7T is large. On the other hand, we may accept a high
probability of signal miss in order to shorten 7, but this will lead to a high probability
of repeated cycles, increasing the average number of steps as compared to the previous
case, owing to which average acquisition time 7, may again appear large. Obviously,
some intermediate optimum should exist for the detection probability per cell py
minimizing the value T.

To solve the task T, = min, P, =const, one needs to specify explicitly the
dependence of dwell time on probabilities ps,py, i.e. equivalently, the channel
model. Assuming AWGN channel, we recall that the correlation modulus is phys-
ically just a real envelope at the matched filter output, which is a Gaussian noise
envelope for an empty cell and an envelope of signal plus noise mixture if the cell
is true. It is well known and may be found in any communications handbook (e.g.
[2,4,7,8]) that the PDF of the Gaussian noise envelope obeys the Rayleigh law (see
Section 3.2 or (3.12)), while the envelope of the sum of signal and Gaussian noise
has Rician PDF. In the normalized form convenient here, the latter may be written
as:

(8.15)

where Y is the value of the envelope normalized to the noise standard deviation, ¢, is
voltage SNR accumulated during the dwell time T; and /y( - ) is the modified zero-order
Bessel function of the first kind. Of course, substitution g; = 0, meaning absence of
signal, turns (8.15) into the Rayleigh PDF (note that 7,(0) = 1).

Remember that the decision on the contents of the cell is done by a comparison of YV
with a threshold. If the threshold normalized to the noise standard deviation is Y, then
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the decision that the cell is true is taken whenever Y > Y,;. Then we may write for the
probabilities py, pg:

e ¢} o]

by = / W (Y|Hy)dY . py = / W(Y|H)dY

Y, Y;

where PDFs W(Y|Hy) and W(Y|H,) are versions of (8.15) for the hypotheses Hy (empty
cell, g; = 0) and H, (true cell, g; > 0), respectively. The integrals above are:

Y2
Pr = exp <— 7[> sPa = Om(qa, Yi) (8.16)

where Qu( -, -) is just the designation of the integral of Rician PDF, also called the
Marcum Q-function [7,8].

Solving the first equation (8.16) for the unknown Y,,p, being set up, gives the
threshold necessary for retaining the false alarm probability at the predetermined level:
Y, = /2In(1/ps). Substituting it into the second equation (8.16) associates p; and py
directly, given accumulated SNR ¢ :

Pa = Qum <Qd,1/2lni> (8.17)
pr

In its turn, SNR provided by dwelling during time 7, is defined as usually (see Section
3.2): qa = \/2PT,/Ny, with P being the signal power and N, being the one-side noise
power spectrum density. Now, let Ty(ps, pq) and qq(ps, ps) be the dwell time and SNR
necessary to secure fixed probabilities py, ps. Then:

— q3(pr;pa)

Tu(py,pa) = 2PNy (8.18)

Eventually, the average search time according to (8.14):

_ 1-P. P,
Ts :ETd: ( C"‘_L) Td yPd
pr Pa (pf )
or in normalized form:
—_ (2P 1-P. P,
T (2] = =) (pr, 8.19
S<N0> ( oy Pd> alpr-pd) (8.19)

Now the optimization solution becomes straightforward. Let the probability of correct
acquisition P, and size of the search region M be specified.

1. Set some value of false alarm probability per cell p, within the range
0<pr<2(1-P)M.

2. Solving (8.13) as an equation for unknown py find its value securing the required P,
along with given py:
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3. Solving (8.17) as an equation for unknown ¢, find its value securing the pair py, pq.

. Substitute this solution into (8.19).

5. Varying p, build the dependence of average search time on p,; and pick the pair py, pr
delivering minimum to the 7.

N

Figure 8.4 presents the curves of the normalized acquisition time 7{(2P/No)M ~! against
the detection probability per cell p; for two probabilities of successful acquisition
P.=0.99,0.999 and four widths of an uncertainty region M = 50,200, 10> and 10*. As
it shows, the minimum of average time occurs in the segment p,; € [0.9,0.95]. Allowing for
rather flat behaviour of curves in the vicinity of the minimum value, p; = 0.9 may be
accepted as a universal figure for optimal detection probability per cell independently of
the uncertainty range M and the probability of a correct acquisition P...

8.3 Acquisition acceleration techniques

8.3.1 Problem statement

Naturally, average acquisition time grows with the number of cells M to be tested, i.e.
uncertainty region extension, all other factors kept the same. The tendency is then
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understandable to reduce M whenever possible, by providing the search system with
relevant prior information on the code phase, signal frequency or other scanned
parameters. For instance in the GPS each of 24 satellites transmits data about the
current and predicted state of the whole space constellation, which are stored in a user’s
receiver. Thank to this, after the user captures the signal of any satellite, he—knowing
his approximate location—may pre-compute with some accuracy the code phases of the
other visible satellites, substantially narrowing the uncertainty region of their search.
A somewhat similar scenario takes place in the mobile telephone cdmaOne (IS-95),
where strict synchronism of all the base stations facilitates searching for the signal of a
new BS by the user’s receiver in the course of handover.

Still, scenarios are inescapable where the uncertainty region is so wide that it can
make the acquisition time of a plain serial search described above intolerably long.
Among other things, this may be characteristic of initializing a receiver (first switching it
on), when its own clock standard has an arbitrary shift with respect to a system one, and
a priori data cannot be used to narrow the search region. Let us illustrate such a case by
way of example.

Example 8.3.1. Consider the searching phase of the code of length L =25 (‘short’ code of
cdmaOne) with no prior information narrowing an uncertainty region. Putting M = L = 2'% and
the probability of a correct outcome no smaller than 0.99 one may extrapolate from Figure 8.4:
Ts > 25 x 2'5/(2P/Ny). If we accept as appropriate the figure 2P/Ny = 40 dB Hz, the average
acquisition time will exceed 80s. The estimation obtained is, however, rather optimistic, being
based on the assumption of perfect initial chip synchronism (see beginning of Section 8.2.2). In
such an idealized situation, it would be adequate to increment the code phase from step to step
by a full chip duration. In practice, such a chip-synchronism often is not available and one-chip
incrementing is at risk of hitting the signal ACF at the slope of the mainlobe instead of the peak
point (see, e.g., Figure 6.9), which increases the hazard of missing a true cell. To avoid this
trouble one should use a smaller increment, typically half of a chip, increasing the number of
cells M within the uncertainty region and, automatically, the acquisition time.

The issue of time-consumption may become all the more crucial in applications
employing very long spread spectrum codes, like systems of ranging and tracking remote
space objects. Let us briefly and without resorting to mathematical subtleties describe
the main techniques of accelerating the search operation.

8.3.2 Sequential cell examining

The strategy of constant dwelling time independently of whether the cell is false or true,
which was accepted above, might be refined bearing in mind that the majority of cells
are empty. Indeed, the potential technique allowing quick recognition of an empty cell
at the cost of prolonged examination of the true one should intuitively save acquisition
time. Such methods do exist and are covered by the general name of sequential analysis.
The simplest sequential procedure is a two-dwell one [9,78,82]. Its key idea consists in
dividing the examination process into two stages. In the first of them a rather low
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threshold secures a low probability of signal miss even with dwelling time 7} short
enough. At the same time, the false alarm probability appears to be much higher than
would be tolerable within the previous (single dwell) method. Due to the short dwelling
time T, false cells are on average examined quickly, but a high percentage of them
(up to 10% or even more) are declared as true. In order to sift out false cells mistaken by
the first stage for true, the second stage, having much better reliability than the first, is
performed. The latter is achieved by a proper parameter choice: longer dwelling time 75,
and higher threshold provide total (including the first stage, too) error probabilities per
cell satisfactory to meet the required probability of a correct acquisition (8.13). If the
stages are performed independently, i.e. correlation at the second is computed ignoring
that accumulated at the first, total false alarm and detection probabilities per cell are
pr = pripys2 and pg = pa1pas, the second index numerating the stage. The total dwell time
per cell now proves to be random since examining any cell either finishes at the first
stage or with some probability passes on to the second stage. The false alarm probability
of the first stage p,1, being many times higher than the total one py, is still much smaller
than the detection probability p,;. This implies that the average dwell time for a false cell
Ty = Ta1 + py1 Tan is smaller than a similar value at the true cell Ty = Ty1 + pa1 Tuns
which is favourable for saving acquisition time. With an optimal choice of p41, ps» the
average acquisition time may be reduced two times or more compared to the search with
fixed dwell time [9,78].

Further enhancement is possible with a greater number of stages, where each one
rechecks the decisions of the previous [9,78,83-86]. The extreme case of this multiple
dwell strategy is the Wald sequential analysis [85], where decision attempts are com-
mitted continuously with processing each successive chip. Two thresholds are then used
and a cell is declared empty as soon as an accumulated correlation drops below the
lower one, while the decision that a cell is true is taken if the upper threshold is crossed.
As long as the decision statistic (correlation) remains between the thresholds dwelling in
the cell continues by integration of more and more chips [77,78].

Calculation of acquisition time of multiple dwell (or in general sequential) strategies
of a serial search may seem more complicated as compared to the case of a fixed-time
one, because of the randomness of dwell time per cell. An effective way of simplifying
the problem is given in [78], where it is proved that the average acquisition time for the
search starting from the least favourable cell may be found as the product of the average
number of cycles and average duration of one cycle.

8.3.3 Serial-parallel search

An evident resource of search acceleration involves several parallel correlators, each
operating autonomously and scanning a separate part of the uncertainty region. In this
case an initial uncertainty region just breaks into n. sub-regions each covering M /n,
cells, where n. is the number of parallel channels, and acquisition time accordingly
reduces 7. times. In the uttermost case when n, = M the search becomes fully parallel
and does not require serial steps. This opportunity enjoys wide application in real
equipment and is especially efficient when exploiting hardware components which are
necessarily present in the receiver but would otherwise be idle during the search session.
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For example, any modern GPS receiver contains a multitude of correlator channels
necessary for parallel tracking of signals of all (or, at least, four) visible satellites. During
the search period these channels are free of other tasks and may be used for signal
acquisition.

8.3.4 Rapid acquisition sequences

Scenarios are possible where speeding up an acquisition becomes of paramount import-
ance. Imagine, for example, a system of object positioning in remote space. In order to
enable unambiguous measurement of a distance in a very wide range, estimated to be
maybe hundreds of thousands of kilometres or more, a spread spectrum signal of a
suitably large period (e.g. hundreds of thousands or millions of chips) is necessary.
Needless to say, the traditional search strategies discussed above will appear prohibi-
tively slow unless the number of correlators goes up to many hundreds. For such cases
special code sequences optimized according to the minimum acquisition time criterion
may appear an effective option.

Why is a serial search so slow when applied to signals with good (having low sidelobes)
ACF? The answer is straightforward: examining and rejecting any current empty cell
reduces the uncertainty region by only one cell, and no fewer than M trials are necessary
to pass across the whole zone starting at the least favourable cell. Then another question
arises: is it not possible to arrange a sequence which would allow halving an initial
uncertainty zone after testing one correlation, instead of discarding only one cell? Stiffler
found an exhaustive solution of this problem [86], although some effective codes saving
acquisition time had been proposed earlier [87].

Stiffler’s rapid acquisition sequences have a plain structure, being just the sum of strictly
synchronized n components. The first is a sequence of chips of alternating polarities
(-+-+—-—+—+—4—--1), 1.c. has period L; = 2 chips. The second is a meander wave
(+-4++——++——--) with period L, = 4 chips, etc. up to the nth meander of period
L, = 2" chips. We may treat the kth component as though it is a sequence of polarity-
alternating ‘long’ chips of duration 25~'A, where A is chip duration of the first meander.
A single correlator search starts by defining a phase of the first component. Under the
assumption of chip synchronism existing, there are only two possible values of it, and
correlating the observed waveform with the local reference, which is a replica of the first
meander, removes this uncertainty: the correlation is positive if the local replica is
in-phase with the arriving first meander and negative if they are antipodal. After this step
is finished the chip synchronism with the second arriving meander (the chips are now of
duration 2A!) is secured and only two phases of the second meander are again possible.
This uncertainty is resolved in the same way, by correlating with the local replica of the
second meander, and so on until at the nth step the phase of the ‘slowest’ (nth) meander is
determined by correlating with its local replica. Thus, the whole search procedure takes
only n steps, each reducing two times an initial uncertainty zone M = 2".

The procedure of sectioning the uncertainty zone into two equal halves is called
dichotomy. Stiffler’s rapid acquisition sequence is best matched to this procedure.

A straightforward generalization of the idea to the case of n.-correlator search
equipment consists in replacement of meanders by n components of period
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L; =n,+ 1 chips, where the chip of each component is L; times longer than the
preceding. The complete period of the summary sequence is L = L initial chips. Each
component should have as good a periodic ACF as possible and among binary compon-
ents minimax ones (see Sections 6.7 and 6.9) are best. At the first step an uncertainty
in L; possible phases of the ‘fastest’ component is resolved after a parallel correlating
of the received signal with n. local references, being the differences of L; — 1 cyclic
replicas of the first component with the L;th one. If among n. correlations some are
non-negative, the reference providing maximal correlation determines the phase, which
is declared as synchronized with the first component of the received signal. Otherwise
the L;th cyclic replica is believed to be true. After this the chip bounds of the second
component are known and the next step is fulfilled, repeating the same operations as the
previous with the second component, etc. The procedure terminates after the nth step,
where uncertainty on the phase of the slowest component is resolved in the same way
as before. As is seen, each step in this case realizes testing of L, = n. 4+ 1 hypotheses and
reduces L; times the initial uncertainty region M = L = L. Again, the sequences just
described are best fit to this Lj-alternative testing: for every receiver complexity
(number of parallel correlators n.) the unique code exists minimizing acquisition time.
Due to this, such codes deserve to be called matched [70]. Stiffler’s rapid acquisition
sequence is one of them, corresponding to a single correlator receiver.

A numerical evaluation shows that the gain in acquisition time accompanying the use
of these codes may range far beyond hundreds of times [70, 86] (see also Problem 8.14).

An ordinary sum of binary components is a multilevel rather than a binary sequence,
which entails signal amplitude modulation and is often considered objectionable.
Clipping the sum and retaining only its sign transforms a matched code into binary,
preserving the search procedure unchanged. The only penalty for this is a slight
(within 1.5-2 times) reduction in the acquisition time gain.

Note that the two-stage synchronization code of UMTS (see Section 11.4.11) is an
example of a similar approach: at the first stage the primary code is found whose period
is 15 times smaller than that of the secondary one. Then the second search stage removes
the uncertainty on which of M = 15 phases of the secondary code is true.

8.4 Code tracking
8.4.1 Delay estimation by tracking

Closed tracking loops are used universally in wireless receivers to instrument continu-
ous and accurate parameter measuring. Depending on the nature of a measured
parameter, examples are automatic frequency control, phase-lock loop, automatic gain
control, and others. A strict mathematical investigation proving the optimality of
tracking loops for the case of time-varying signal parameters is based on the theory
of nonlinear estimation [88], but their primary idea follows directly from the ML rule
studied in Chapter 2. The specific character of a spread spectrum receiver manifests
itself chiefly in a despreading operation (see Section 7.1), appealing to a precise
synchronism of a local despreading reference with the arriving signal. Keeping this in
mind, we concentrate here on the precise measurement of delay (or code phase) of the
arriving signal.
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To get the point most quickly let us simplify the problem up to estimating the delay of
a baseband signal, removing the effects of random phase. Suppose that 7 is an unknown
delay of a baseband signal s(z). Then on the strength of the ML rule (2.55) the optimal
estimator should form estimation 7 of this parameter as its value maximizing the
correlation z(7) between the reference signal replica s(z — 7) and observation y(t). One
way to implement this is a correlator bank (as in Figure 2.18) directly computing the
function z(7) at M sample points; the other is a matched filter structure reproducing z(7)
in real time (Figure 2.19, the envelope detector being unnecessary for a baseband signal).
But both schemes may appear infeasible for the case of a spread spectrum signal of a
long length: the first due to the necessity for numerous correlators and the second due to
a problematic matched filter implementation (see Example 8.1.1).

The tracking loop structure is one more alternative. Note that at the maximum point
of z(7) its derivative vanishes:

Z(7) =

T
/ (1 #)dr =0 (8.20)
0

Let us call e(7) = Z/(7) the error signal, the reasons for which will be clear soon. As is
seen, one may search for 7 as an argument making the error signal zero. Assume that the
genuine signal delay is 7 and a tentative estimate is 7, and calculate the mean of the error
signal over all noise realizations in y(z):

T

T T
e(7) = /)T (t—7)d /sl—T /sz—r (1 —7)dr
0 0

0

(8.21)

The last equality here follows after integration by parts, whenever care is taken that the
integration interval spans the whole signal ‘body’ regardless of 7:s(—7) = s(T' — 7) = 0.
Under the same condition the average error signal at 7 = 7 (tentative estimate coincides
with a true parameter value) is zero:

T
/sl—T (1—7)dr = —L(I_T)]z
0

\]>

but the derivative of e(7) at the same point according to the last part of (8.21):

T
/ l—T
0

is minus energy of the signal derivative, i.e. negative. This means that if 7 lies in a sufficiently
small vicinity to the left of 7, e(7) is positive, while with 7 > 7 e(7) is negative. This suggests
the structure of a delay-lock loop (DLL) solving equation (8.20) by way of iterations and
shown in Figure 8.5. The local reference generator creates a time-shifted replica of the signal

de(7)
dr

T=T
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Figure 8.5 General DLL structure

derivative s'(¢ — 7), which is correlated in the correlator with the observation y(¢). The
resulting error signal is then cleared off the noise by a loop filter to approximate averaging
in (8.21). When the smoothed error signal is positive it tells with a high probability that the
local reference s'(¢ — 7) is ahead of the signal, and forces the voltage controlled oscillator
(VCO) to lower its frequency, i.e. increase the reference (tentative) delay 7. On the other
hand, a negative smoothed error signal drives VCO' to the higher frequency, i.e.
reduces reference delay. Clearly, in the steady state DLL maintains the error signal
around zero, securing synchronism between the local reference and the arriving signal.

Obviously, to operate adequately the DLL needs an initial targeting, i.e. a starting
value of 7, which is close enough to a genuine signal delay. On the one hand, this
imposes demands on the precision of the acquisition procedure. On the other hand, the
reference waveform following from the ML rule is usually not feasible (e.g. it may
include delta functions when the signal consists of rectangular chips). Typically some
other waveform replaces it, which, being more convenient to implement, preserves the
main property: a distinct odd dependence of error signal at the correlator output on
estimation error 7 — 7. In constructing such a reference the desire to provide pull-in
(capturing synchronism) with softer requirements for the initial targeting may play an
influential role. We will have more comments on this in Section 8.4.3.

8.4.2 Early—late DLL discriminators

The first element of the DLL structure is a discriminator, i.e. correlator—reference
combination forming an error signal e(7). In one of the classical schemes of DLL
discriminator for a baseband signal s(z), the reference s,(¢) is the difference of two
time-offset replicas of the signal: the late s(r — §/2) and early s(z + 6/2) ones, § being
their time separation. Then a useful component of the error signal due to mismatch
e = 7 — 7 of reference versus the received signal is:

m:A/TS(I—T)sr(t—f')dlzA/Ts(t—T)[s(t—f'—g> —s(l—%+g>]dz

= AE[p(e + 6/2) — p(e — 6/2)] (8.22)

'In a real implementation input quantity controlling the oscillator frequency may be not a voltage, e.g. in a
digitally realized loop input number plays this role. However, to avoid unnecessary multiplicity of terms we use
the traditional term VCO as universal.
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where E is the energy of a standard signal s(7) over integration time 7, A is the amplitude
of the received signal scaling it versus s(z), and p(7) is the normalized signal ACF
calculated over the time space [0, 7]. Take, for instance, a discrete periodic signal
(spread spectrum code) of length N with chips of duration A, and let integration time
span integer number / of periods: 7 = INA, then p(7) is periodic ACF. If s(¢) is a
minimax binary sequence (e.g. m-sequence, Legendre sequence) with rectangular chips,
then its normalized periodic ACF p(7) looks as is shown in Figure 8.6a. The advancing
and retarding (with minus) copies of p(7) entering (8.22) are shown in Figure 8.6b by the
dashed lines for an example separation § = 2A and their difference e(c) = e(7 = 7 + ¢),
called the discriminator curve, is given in the same plot by the solid line. It is readily seen
that the discriminator under consideration is fully adequate: advancing or lagging of the
reference versus an input signal causes positive or negative error signal, respectively,
enabling the VCO to change its frequency and move the reference in the proper
direction.

Figure 8.7 presents one possible structure of an early—late discriminator for the case of
a baseband code. The code generator clocked by VCO forms the early signal replica
s(t + 6/2), which delayed by 6 gives a late replica. Their difference enters the correlator
as a reference signal. The code replica s(z) synchronized with the input signal and used
for despreading may be obtained as delayed by the /2 early replica. If the code
generator is a shift-register-based one and 6 = 2A no external delays are necessary, since
all three code replicas may be read from three successive register flip-flops.

An alternative scheme of the same discriminator involves two correlators first separ-
ately correlating the observation with early and late signal replicas and subtracting the
results to come to an error signal e(7) [18,77].

p(7)

(a)
7 0 ¢ ;
L 1e)]
o) fA
777777777777777777777777 N
,,,,,,,,,,,,,,,,,,,,,,,, F N Y

Figure 8.6 Discriminator curve of the early-late DLL
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In the case of a bandpass signal the discriminator just considered may be applicable
only if the receiver phase recovery loop is previously synchronized with the incoming
signal carrier, so that a bandpass signal may be transformed into its real baseband
equivalent. For this reason it is often called coherent, as is the DLL employing it. If
preliminary phase synchronization is not possible, a noncoherent discriminator is used
based on comparison of squared moduli of two correlations. These are calculated
between the observed complex envelope Y(¢) and the complex envelopes of two refer-
ences, being carly and late replicas of the signal code. Above all, this discriminator
proves to be efficient despite the presence of data modulation. Technically it is often
implemented as shown in Figure 8.8, where multiplication of complex envelopes is
performed through heterodyning (see the comment at the end of Section 7.1.2). Let us
inspect how this structure works, ignoring input noise and setting, with no generality
violation, 7 = 0. Let the references be time-offset replicas of the spreading signal having
complex envelope S(7) and carrier frequency f;, which differs from the received one fy:

Sy (t —e+ g) =Re {S (t —ect g) exp(j2xfit +j19)] ,

where an initial phase ¢ will finally play no role. The incoming signal complex envelope
AB(£)S(t) exp (j¢) includes along with the spreading code also signal amplitude 4, data
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filter detector

)
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s(t—7+082) s(t—7+62)

Figure 8.8 Early—late noncoherent discriminator
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modulation component B(7) and unknown initial phase ¢. After multiplying the input
signal with the references and extracting the low-frequency component the two resulting
bandpass signals of difference carrier frequency fy — f; will have complex envelopes
AB(Z)S(Z)S‘*(I —ex6/2)exp[j(¢ — ¥)]. Suppose that bandpass filters after the multi-
pliers have pulse response with complex envelope H(7). Then real envelopes at the filter
outputs calculated in terms of the convolution integral (see Section 2.12.1) are:

;’]OB(e)S(a)S*(aeii)H(r9)d9

If the filter pulse response is rectangular of duration T equal to data symbol duration,
and data modulation is PSK, then samples of output real envelopes at the moment
t =T are:

g/TBo)S(z ' <tsj: ) _ g/Ts ' <t5j:6>dt — AE
0 0

being proportional to the modulus of the corresponding value of ACF p(7) of the
spreading complex envelope. The difference of squared moduli again gives a discrim-
inator curve of form similar to the one of Figure 8.6 (see Problems 8.7 and 8.15).

Implementation of the scheme of Figure 8.8 may run into trouble in the form of
parameter imbalance of the early and late branches. In order to get round it various
solutions are known [9,18,77], including the tau-dither loop (another name is ‘time-
shared’), where only a single branch is involved, switching by turns between the early
and late references.

pex3)

8.4.3 DLL noise performance

DLL is just a particular case of a phase-lock loop and exposes the difficulties as to the
analysis of its behaviour, which are generic to nonlinear feedback systems [89,90]. Still,
one of the most important characteristics of DLL performance-noise error of a steady-
state delay tracking—is easily calculated whenever the linear approximation is applicable.

In practice, rather small noise error is usually wanted, meaning good filtering cap-
ability of the loop against noise. The fluctuations at the loop output may be considered
small if the error, i.e. the difference between the true current signal delay 7 and its
estimation 7 delivered by DLL, is held within the linear zone of the discriminator curve
with probability close to one. If this condition is met, one can believe that the discrim-
inator curve is linear in the infinite range of error ¢ = 7 — 7. This allows linearizing the
system model as follows.

Let us limit ourselves to a baseband (or equivalently, coherent) discriminator of
DLL and calculate the noise power spectrum N,(f) at its output. Since the
correlator of this discriminator correlates observation with a reference signal
s;() = s(t — 6/2) — s(¢t + 6/2), output noise variance according to (2.15) is found as
0> = NyE, /2, where E, is reference energy over integration time 7. With E being, as
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earlier, standard signal energy, E, = 2E[1 — p(8)] and o? = NoE[1 — p(6)]. Integration
over interval T may be thought of as low-pass filtering with bandwidth W, = 1/T,
meaning that the found noise power is spread over this bandwidth and therefore
one-side noise power spectrum at the discriminator output is:

0.2

Na(f) = 7 NoET (1 — p(0)] (8.23)

With a rectangular chip shape and negligible level of sidelobes p(7) is an isosceles
triangle of unit height and base 2A, so that Nd(f ) = NoET, whenever 6 > A.

Replacing the true discriminator curve by an imaginary linear one means just
an infinite continuation of a linear segment surrounding zero point with the same slope
S;. The last may be found from (8.22) allowing for evenness of ACF:

- §)-4(4)

Leaning again upon a triangular shape of ACF gives:

de(c)

de

Sq =

e=0

—2AE/A = —24EW, §<2A
0= (8.24)

—AE/A = —AEW,  §=2A

where estimation of discrete signal bandwidth W = 1/A is substituted.

Imagine now that instead of a true noise n(¢), which is added to the received signal,
a dummy noise n,(#) with power spectrum density N,(f) = Ny(f)/ S2 is added directly to
a measured parameter 7. At the output of a linear discriminator replacing the real one,
this fictitious noise will be indistinguishable from the true noise at the real discriminator
output, since its power spectrum S(ZJNT(f ) = Ny(f) is absolutely the same. We then arrive
at the system model of Figure 8.9, whose input is not a signal corrupted by noise, but
instead parameter 7 itself in a mixture with a fictitious additive noise 7,(¢). This mixture
is processed by a linear closed loop, where estimation 7 is subtracted from the input
quantity, outputting the error €. The filter with transfer function A(f) then smoothes
error ¢ scaled by a discriminator slope S, to produce the output estimation 7. Filtering
here aggregates operations fulfilled by a loop filter and VCO to convert a real discrim-
inator error signal e(?) into a corresponding shift of a reference signal. This model is

Sd
T+n(1) +/7 7\« Filter

NN/ i T

|

Figure 8.9 Linearized model of DLL

S |
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entirely linear, and variance var{7} of random fluctuations at its output may be found,
based on the superposition principle, independently of signal component, as:

var(7) = [ BRI o (8.29)
0

where /,(f) is the transfer function of a closed loop. To find the last quantity it is enough
to apply the delta function to the loop input. Then the output spectrum, being exactly
I;,(f), obeys the equation i;;(f) =[l— };;(f)]Sdﬁ(f) leading to a rule, which is well known
in the theory of linear feedback systems [2,7]:

Sah(f)

W) =17 Sah(f)

(8.26)

A dummy spectrum of delay fluctuations N(f) is spread over the bandwidth Wy = 1/T,
which is typically much wider as compared to the bandwidth of the closed loop;
otherwise the latter could not smooth noise fluctuations effectively. This allows the
following version of (8.25):

Nu(f)By

var{7} = N.(f)By = 5 (8.27)

where the loop noise bandwidth By is determined as:
- [ota - |
0

Returning now to (8.23) and (8.24) and noting that p(6) = 1 — §/A,0 < 6 < A we may
write (8.27) in the form:

Sl

2
d
1+ Sqh(f) 4

(6/A)/(4W3ql), 0<é6<A
var{7} = ¢ 1/(4W?q}), A<§<2A (8.28)
1/(W3q7), §=2A

where

A’E Arp
g = = (8.29)
NoByT — NoBy

is called SNR in the loop. The reason for such a name is obvious: the numerator of
(8.29) contains an actual signal power, since P = E/T is a power of a standard (having
amplitude 4 = 1) signal. At the same time, the denominator presents a noise power
within the noise bandwidth of the loop.
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Equation (2.28) is quite similar to the Woodward formula for potentially achievable
accuracy of time measurement met in Section 2.12.2:

. 1
Val‘{T} zm7q>> 1

stressing that a tracking loop is an adequate means of time measurement.

There are three parameters affecting the steady-state accuracy of DLL: signal level
with respect to noise A2P/Ny, loop noise bandwidth By and early-late separation 6. The
first is a brute force resource and needs no special comment. Optimization of the second
is not a straightforward task, since a mechanical reduction of noise bandwidth without
careful design of a loop filter may dramatically deteriorate the dynamic properties of the
system like pull-in duration and ability of tracking a varying-delay signal. Choosing the
separation ¢ is a matter of compromise, too: reduction of § versus chip duration A
provides higher estimation accuracy, thanks to positive correlation of noises at the
outputs of early and late branches. At the same time the smaller is separation 6, the
narrower is the discriminator characteristic itself (see Figure 8.6). This imposes more
rigid demands on the acquisition precision, since the latter should guarantee falling time
mismatch of the local reference and received signal inside an active (non-zero) zone of
discriminator characteristic. Another factor to be kept in mind is the risk of loss of
synchronism increasing with narrowing discriminator characteristic. A popular way to
reconcile the conflicting requirements for the parameters of a tracking loop is adapta-
tion: at the initial stage of pulling-in wider noise bandwidth and larger separation may
be used, which after finishing the transient processes are reduced to come to a higher
steady-state precision.

Problems

8.1. A serial search should be organized with a constant dwell time 7T; = 2ms. The
discrete signal to be searched occupies bandwidth 1 MHz and has code length
L = 1000. No prior information on code phase is known and the initial frequency
bias of the local clock versus the signal carrier frequency lies in the range +10 kHz.
Estimate roughly the minimal number of cells to be tested.

8.2. Find asymptotic approximations of overall average probability and average num-
ber of steps of a serial search if the false alarm probability becomes very small
(Mp; < 1). Try to explain the results physically.

8.3. A serial search is used with fixed dwell time and threshold, which are optimized for
some signal power P. What happens to the overall average probability of acquisi-
tion and average number of steps in two limiting cases: P — 0 and P — oo if no
readjustment of dwell time and threshold is done? Give physical reasoning for the
results.

8.4. Find expressions for probabilities of false alarm and detection and then for dwell
time per cell necessary to secure given py, py, if signal amplitude fluctuates according
to the Rayleigh law (3.12) and the initial phase is a random constant uniformly
distributed over the interval [—, 7]. (Hint: the easiest way to do this is by treating a
signal as a Gaussian process independent of noise.)



274

Spread Spectrum and CDMA

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

Find expressions for probability of correct acquisition and acquisition time for
Stiffler’s rapid acquisition sequence of length L = 2".

Build a discriminator curve of a coherent DLL for the cases § = A,0 < 6 < A, and
A < 6 < 2A. Find an extension of the maximal-slope zone. Why is 6 > 2A irrele-
vant?

Build a discriminator curve of a noncoherent DLL with separation 6 = A. Why is
6 = 2A irrelevant?

Prove that a voltage controlled oscillator of DLL operates as an integrator of the
error signal. Suppose no noise is present on the input and signal delay is constant.
Prove that steady-state error at the DLL output is zero. Is the same true if the
signal delay changes linearly and the DLL contains no more integrators?
Consider the DLL where no additional loop filter is used. Suppose the discrim-
inator slope is 0.5 V/us and VCO changes its frequency by 100 kHz per one volt.
The initial difference of frequencies of VCO and received signal is 10 kHz. Find a
steady-state noise-free error of DLL.

Find noise bandwidth and variance of the output error in terms of discriminator
slope and VCO gain of a DLL having no loop filter. Give physical reasoning for
the dependences of these quantities on system parameters.

Matlab-based problems

8.11.

8.12.

8.13.

Write a program evaluating the average acquisition time (8.19) and plotting depen-
dences similar to those of Figure 8.4 for an arbitrary search region, given the overall
probability of a correct acquisition. Running the program for various values of M, P,
observe and comment on the behaviour of optimal probability of detection per cell.
Modify this program for the signal model of Problem 8.4. On running the
program, observe and try to explain the difference in optimal detection probabil-
ity and acquisition time against the previous case.

Write a program illustrating the dynamics of serial search of a baseband m-sequence.
Recommended steps:

(a) Generate a {£1} m-sequence of memory 7-10 and oversample it two times in
order to have two search steps per chip.

(b) Repeat this sequence as a reference with a random cyclic shift.

(¢) Form several Gaussian noise realizations with standard deviation about
4/(2" — 1)/8 higher than the signal amplitude, add them to the original
sequence and plot with superposition the observation realizations obtained.

(d) Plot a reference sequence.

(e) Repeat the iteration steps, calculating every time the correlation between
reference and an observation, each time updating the noise realization; if a
current correlation normalized to the length exceeds the threshold 0.5 break
the cycle and declare the search finished, otherwise shift the reference by one
position (half a chip) and continue to the next step;

(f) At every step plot the correlation versus a current cell number and current
reference to see its motion against the signal; use the operator ‘pause’ for a
better visualization.
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8.14.

8.15.

8.16.

(g) Run the program, varying the threshold, and observe events like false alarm,
signal miss and repeated cycles.

Leaning upon the results of Problem 8.5, write a program calculating search time
for Stiffler’s rapid acquisition sequences, given the probability of correct acquisi-
tion. Running the program for various code lengths, estimate the gain in acquisi-
tion time versus a serial search of an ordinary binary sequence of the same length.
Plot the dependences of both acquisition times on # for different probabilities of
correct acquisition.

Write a program calculating and plotting the discriminator curves of coherent and
noncoherent DLL for various chip forms and early—late separations. Run the
program for rectangular and half-cosine chips and comment on the results.
Write a program for simulating and exploring coherent DLL with no loop filter.
Recommended steps:

(a) Generate a {1} m-sequence of length L = 63 and oversample it 100 times.

(b) Set early—late separation 6 within the range 0 < § < 2A and form early and
late references as shifted copies of the m-sequence.

(c) Add noise with a standard deviation exceeding signal amplitude by 15 times to
the m-sequence of item (a) to obtain observations.

(d) Calculate correlations (normalized to reference energy) with early and late

references and error signal as their difference.

(e) Multiply the error signal by gain G and round the result.

(f) Shift references according to the scaled error signal of the previous item.

(g) Plot ‘pure’ signal, observation and references.

(h) Repeat items (¢)—(g) 1000 times and observe the behaviour of the DLL. Use
the operator ‘pause’ inside the cycle to get a proper visualization.

(i) Changing gain in the range 10—40 and varying separation (e.g. 6 = A/2, A, 2A)
observe and compare with the theoretical prediction the dependence of output
variance on these parameters.

(j) Find an experimental estimation of error variance and compare its value with
the one found in Problem 8.10.
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Channel coding in spread
spectrum systems

9.1 Preliminary notes and terminology

In the course of transmitting, storing or processing the data need to be presented in some
appropriate form. In digital communications the primary message generated by a source
may be thought of as a sequence of data bits or a bit stream. It is mapping the bit stream
onto a sequence of symbols of some predetermined alphabet that is traditionally called
coding. The goals of coding may be different. For example, the terms source coding or data
compression mean removal of redundancy from a bit stream to represent the source data
in the most economical form. Another case of coding is encryption, which is performed to
protect data from unintended interception or forging. The subject of this chapter is
channel coding, aimed at making data transmission over the communication channel as
immune as possible to the corrupting effects of unavoidable channel interference. The
particular cases considered in Sections 2.3 and 2.5-2.7 show how important it is to find a
proper signalling manner for overcoming the degrading influence of channel noise. Along
with modulation, channel coding governs reliable data transmission over a noisy channel.

For over five decades of its existence, channel coding theory has been directed and
motivated by the fundamental Shannon’s capacity theorem mentioned in Chapter 1.
According to this theorem, any channel is characterized by the constant C (measured in
bits per second) called capacity, which establishes the upper bound of achievable rate R
of information transmission over the channel. Whenever R > C no signalling mode can
secure an arbitrarily reliable data transmission. On the other hand, when R < C one can
always find a code guaranteeing as small a probability of mistaking one message for
another at the receiving end as desired (see Figure 1.1). Shannon’s capacity theorem,
being a pure mathematical existence assertion, does not point to any concrete coding
algorithm to achieve the quality tipped by it. Moreover, its proof, based on averaging
the error probability over all possible channel codes, shows that almost all codes of
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sufficient length are good from this angle. And yet finding specific code rules allowing
Shannon’s limit to be approached remained impenetrable up to the moment of
discovering turbo codes in 1993, although lots of important and widely utilized results
had been obtained in pursuing this target.

Of course, modern coding theory is too sophisticated to permit pressing even its initial
basics into a brief chapter. It looks all the more inappropriate against the background of
the key role of coding theory in general information technology, of which spread
spectrum communications is only a particular branch. Still, the importance of channel
coding in spread spectrum systems is extremely high, since the majority of them are
designed to operate in a very noisy environment and, what is more, many themselves
create strong intra-system interference (MAI in asynchronous CDMA). The MAI
effects, unlike the natural (thermal) noise, cannot be overcome just by brute force,
i.e. increasing signal power, since all users have equal rights and gain in SIR for one
of them obtained in this way turns into a loss for the others (see Sections 4.5 and 4.6).
This leaves the designer with only two resources for withstanding MAI: increasing the
spreading factor and involving powerful channel codes. Trying to handle the available
space reasonably, we limit this chapter to only coding issues related to the commercial 2G
and 3G spread spectrum standards cdmaOne, UMTS and cdma2000. Accordingly, the
mathematical tools, designations and description manner below are narrowly adapted to
match this particular task in the most economical and fast way. We refer readers
interested in a more universal scope to the books on coding theory (e.g. [31,33,91]).

Let us start with some basic classification of channel codes. The first feature to
distinguish between them is alphabet size, according to which we talk about binary, ternary
etc. codes. Although the range of applications of non-binary (e.g. Reed—Solomon or
Ungerboeck) codes is pretty wide nowadays, we concentrate on only binary ones, which
are used in the specifications mentioned above. Another form of classification is the way in
which information data are mapped onto the codewords or code vectors (i.e. sequences of
code symbols carrying the transmitted message). The point is that any channel coding
consists of inserting some redundancy into the message, making the transmitted signals
more distant from each other, and thereby reducing the risk of confusion between them.
Depending on the way of adding this redundancy, all channel codes are classified into
block or tree (trellis) codes. A characteristic of block codes is segmentation of the source
bitstream, which is divided into blocks of k information bits, every block being encoded
into n > k binary symbols. In so doing, the redundant n — k symbols serve to protect only
the k source bits of their own codeword. Codewords of tree (e.g. convolutional) codes have
a different structure: a continuous-source bitstream is encoded into an infinite stream of
code symbols (codestream) with no fragmentation (see details in Section 9.3).

When it arrives at the receiving end the encoded word should be mapped back onto the
transmitted data bits. This operation is called decoding. Physically, due to modulation,
any codeword travels via the channel as some signal. When transmitted over the AWGN
(or another state-continuous) channel, the signal gets corrupted by noise whose
instantaneous samples are continuous. The optimal (ML) decision strategy of a receiver
in the case of Gaussian noise is equivalent to the minimum Euclidean distance rule
(see Section 2.1), which means declaring true the signal closest to the observation
obtained. This straightforward procedure ends directly in decoded data bits and bears
the name (along with its numerous approximations) soft decoding. The complexity of
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soft algorithms is the reason why an alternative /ard decoding is often used instead.
This decoding mode includes two steps: at the first of them decisions are made on all
individual code symbols and as a result an observation appears to be demodulated into
the vector consisting of symbols belonging to the code alphabet (in the considered case,
binary). Some of the symbols of the binary observation thus obtained may be erroneous
and then the whole demodulated vector is likely to differ from all codewords. The second
step finds among all allowed codewords the one having maximal likelihood, meaning
the greatest probability to be transformed by the channel to the current demodulated
binary observation. Such a decoding procedure, typically ending in declaring some
specific code vector as true, is called error correction. Alternatively, the goal of decoding
may be limited to only checking whether the current binary observation is a true code-
word or whether some errors occurred due to the channel corrupting effects. Then, if a
binary observation enters the set of allowed codewords, it is mapped back onto the
corresponding data bit sequence. Otherwise the fact of unsuccessful transmission is
registered and the receiver either requests the transmitter to repeat the message (as in
ARQ systems) or tries to restore it by interpolating the previous and subsequent ones.
This sort of decoding, called error detection, is characteristic of the application of block
codes in modern commercial wireless spread spectrum systems, and the following section
focuses on coding formats complying with the error detection task.

9.2 Error-detecting block codes
9.2.1 Binary block codes and detection capability

Suppose that by, by, ...,b;_| are k source bits to be encoded in a binary codeword
U=, u,...,u,_ of length n > k. All 2¥ combinations of k source bits are assumed
possible, meaning that there are M = 2¥ codewords altogether. In every codeword n — k
binary symbols are redundant in the sense that only k symbols are necessary for one-
to-one mapping of M source messages onto binary vectors. These redundant symbols
make codewords more discernible from each other, securing better noise resistance.
The set of all M = 2 words of length  is called (n,k) block code. The hard decoding,
i.e. demodulation of continuous observation into a binary one, corresponds to the
model of the binary symmetrical channel (BSC), transforming an input symbol
u =0, 1 into the opposite output binary one y # u with the crossover (or symbol error)
probability p. The attribute ‘symmetric’ emphasizes the equal probabilities of transitions
of ‘0’ into ‘1’ and vice versa (see Figure 9.1).

u

Figure 9.1 Binary symmetric channel model
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Suppose that y = (yg, 1, - -, Vu—1) 1s the binary observation at the BSC output. If y
does not coincide with one of M code vectors u, the receiver sees that erroneous symbols
are present (error detection), otherwise k data bits are released corresponding to the
estimated codeword a = y. Clearly, if a transmitted word is ug but the binary observation
coincides with another codeword, i.e. =y # ug, an undetected error occurs and the
released bits are not the true transmitted ones.

Let us introduce some more definitions. The Hamming distance dy(f, g) between two
vectors f = (fo, f1,...,fn1) and g = (go, g1, - - ., €s—1) of the same length n is the number of
positions where the vectors have different elements f; # g;. The Hamming weight wy(f) of
a vector f is the number of its non-zero components. If, for example,
f =(01011), g = (11000), then dy(f,g) = 3, wy(f) = 3 and wgy(g) = 2. It is straightfor-
ward to make sure that dy(f,g) = wy(f — g) and wy(f) = dy(f,0), with 0 being zero
vector.

Let us assume as transmitted a codeword u. The BSC will transform it into the
different fixed codeword v (causing thereby an undetected error and releasing untrue
data bits corresponding to v), if symbol errors occur in all dy(u, v) positions where u and
v differ with no corruption of n — dg(u,v) symbols coinciding in u and v. For a
memoryless BSC, i.e. the one where all symbol errors are independent we may then
put the probability P(y = v|u) of the event above as:

P(y = v|u) = p# (1 — py"- ey 9.1)

Since p < 1/2 (otherwise we just interchange the designations of output ‘0’ and ‘1’), to
reduce the probability of confusion of codewords u and v the Hamming distance
between them should be as large as possible. Consider now Hamming distances
dy(u,v) between all different code vectors of a code U. Denote the least among them
as dy and call it the (minimum) code distance of a code U:

dy = rriin dy(u,v) (9.2)

uvel

Any codeword of U may appear as a transmitted one and to minimize the risk of
confusing the two closest code vectors the distance between them, i.e. code distance
dy, has to be maximal. We arrive thereby at the following assertion.

Proposition 9.2.1. Code U is capable of detecting any {, or fewer symbol errors (up to t4 errors)
if and only if its code distance dy > ty + 1.

Indeed, take a code with dy < fy and pick out a pair of its closest code vectors u,v. If dy
symbols of u different from those of v are corrupted, then u becomes v, meaning that a pattern
exists of no more than t, errors, which is not detectable. Conversely, if the distance between any
code vectors exceeds ty, no pattern of ty or fewer errors can transform one codeword into another.

One may prove the following statement in the same way (Problem 9.4).

Proposition 9.2.2. Code U is capable of correcting up to f. or fewer symbol errors if and only if its
code distance dy > 2t + 1.
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9.2.2 Linear codes and their polynomial representation

Let us treat binary code symbols {0, 1} as elements of a binary finite field GF(2)
(see Section 6.6) and consider symbol-wise linear operations over codewords of a code
U obeying the arithmetic of GF(2). Clearly, there is only one non-trivial operation of
this sort, namely symbol-wise GF(2) addition:

u= (uo,ur,...,up—1), V="_90,V1s.-sVn=1) = W+V= (o4 vo,uy +Vi,... U—1+ Vp_1)

For example, if u=(100111) and v = (010110), then u+ v = (110001). Symbol-wise
subtraction has no independent role and just repeats addition, since in GF(2) the
negative of an element is the element itself. In the same way symbol-wise multiplication
by a scalar from GF(2) (i.e. by 0 or 1) of any codeword either makes it zero vector or
does not change it at all.

A binary code U is called linear if the sum of any of its code vectors is again some code
vector belonging to U. The name stems from the fact that such a code is a vector (linear)
space over the field GF(2) [31,33,91], although this concept is not involved seriously in
our further discussion. Any linear code U of length n contains zero vector (i.e. with n
zero components) as a code vector, since the sum of an arbitrary code vector entering U
with itself produces exactly zero vector: u + u = 0. The following statement explains one
of the reasons why linear codes are of special interest.

Proposition 9.2.3. The code distance of a linear code U is equal to the minimum Hamming
weight over all non-zero codewords:

dy = mri[p wi(u) (9.3)
u#0

To prove this just make a substitution dy(u, v) = wy(u — v) in (9.2) and note that u — v =u’ is
again a codeword of U.

As (9.3) shows, there is no need to test all M (M — 1)/2 different vector pairs to find
code distance of a linear code containing M words. It is enough to ‘weigh’ M — 1 non-
zero code vectors, i.e. to perform M /2 smaller number of tests, which, considering the
typically enormous number of words M, offers a highly significant gain.

To get the idea of designing error-detecting codes of 2G and 3G wireless standards a
polynomial description of linear codes is a good aid.

Let us associate with a codeword u = (ug, uy, . .., u, 1) the code polynomial u(z) of a
dummy variable z arranged as:

u(z) = 12" F 02" 4 g

where by way of agreement we put z° = 1. This polynomial representation, which is
widely used in coding theory, is just a form of the z-transform, underlying discrete
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linear system analysis, discrete signal processing, digital filtering etc. [2,7]. One-to-one
correspondence between sets of codewords and code polynomials means that the sum of
two code polynomials u(z), v(z) of a linear code U is again a code polynomial of the same
code. Specifically, if u(z) = 27;01 uiz', v(z) = ::01 v;z' are code polynomials of words u,
v of a linear code U, u(z) + v(z) = Y1, (u; + v;))z' is a code polynomial of the word
u+v € U, where addition of coefficients follows the rules of the field they belong to,
i.e. in our case GF(2).

Polynomial arithmetic used in coding analysis and design includes two more
operations: multiplication and division with remainder. The rules of these operations
are universal regardless of the fields of polynomial coefficients, but dealing now
with binary codes we use the terms of binary arithmetic. Consider an arbitrary (not
necessarily a code one) binary (i.e. with coefficients from GF(2)) polynomial a(z).
The highest power of z in this polynomial holding non-zero coefficient is called
the degree of a(z) with symbolism deg a(z). Let a(z), b(z) be two binary polynomials
and deg a(z) = m,deg b(z) = n. Then their product a(z)b(z) is a polynomial of degree
m + n obtained by extending the commutativity (z'a = az’) and distributivity laws to
operations including a formal variable z and gathering together coefficients of equal
degrees of z:

a(2)b(2) = (@mz™ + 12"+ -+ ag) (buz" + by 12" + -+ by)

= a,,,b,,z””” + (amb,,_1 + am_lbn)ZmHFI +- 1t (albo + agb, )Z+ aoby

m+n k
k
= g aiby—; |z
k=0 0

i=

Certainly, we put z"z" = """ _all operations over a;, b; are performed in GF(2), and in
the last internal sum coefficients «;, b;, whose indexes become negative or exceed the
polynomial degree should be set equal to zero. Take for example binary polynomials
a(z) = z* + 22 + 1,b(z) = 2> + z + 1, then their product a(z)b(z) = 20 + 2> + 22 + z + 1.

The algorithm of dividing a dividend a(z) by the divisor b(z) with remainder looks as
follows:

a(z) = q(2)b(z) +r(2) ©-4)

where ¢(z) is a quotient and r(z) is remainder. The uniqueness of ¢(z), r(z) is secured by
relations deg a(z) = deg ¢(z) + deg b(z) and deg r(z) < deg b(z). The algorithm (9.4) is
similar to the ‘school’ rule of dividing integers with remainder, the polynomial degree
replacing a number magnitude. One of the techniques realizing this operation is ‘long
division’, i.e. successive computation of remainder and division of it by a divisor until
the remainder degree becomes smaller than the degree of the divisor. At the first
iteration b(z) is multiplied by z raised to the power equalizing the degree of the product
with that of a dividend a(z). Subtraction (equivalent to addition in GF(2)) from a(z) of
the product obtained results in the first remainder, which at the second iteration
plays the role of dividend, and so forth. Let us illustrate it by an example.



Channel coding in spread spectrum systems 283

Example 9.2.1. Suppose a(z) =z*+2z%41,b(z) =2? +z+1 and apply a long division
algorithm:

2241
Zrz+ )24+ 2841
+
Zr+ 242
1
+
22+ z+1
—
After two iterations we have q(z) = z% + 1, r(z) = z so that division with remainder results in
2+ 24 1=+ 1)+ z+1)+ 2z

Similar to integers, we say that a(z) is divisible by b(z) (or b(z) divides a(z)) when the
remainder is zero, i.e. a(z) = ¢(z)b(z).

Consider now a linear code U of length n with all code polynomials divisible by the
fixed polynomial g(z) of degree r=1. Any code polynomial of U then has the form
u(z) = b(z)g(z), and since there are 2"~" different factors b(z) securing the product degree
no greater than n — 1, such a code can include 2"~ codewords at most. In fact, it is
always in one’s power to go the reverse way and build up a code with this maximal
number of words, i.e. transmitting kK = n — r information bits, polynomial g(z) of a fixed
degree r given. For that it is enough to use k =n —r data bits by, by,...,b;_1 as
coefficients of a data polynomial b(z) = b_1zZ°"" + by_»z""2 + ... 4+ by and construct
the corresponding code polynomial as a product u(z) = b(z)g(z). Then 2F different
data k-bit blocks are in one-to-one correspondence with the same number of code
polynomials of degree no greater than n — 1. The linearity of this code can be checked
readily (Problem 9.11). Polynomial g(z) in such a construction is called the generator
polynomial of U. Note that the number of redundant or check symbols of such a code
always equals r, i.e. the degree of the generator polynomial.

When a data polynomial b(z) is multiplied with the generator polynomial g(z) directly
the codewords corresponding to polynomials u(z) = b(z)g(z) are non-systematic, i.e. data
bits in them are not explicitly seen. To come to a systematic code, in which, e.g., the last
k binary symbols are information bits themselves and r = n — k first ones are check
symbols, some rearrangement of codewords may be done. The complete set of code-
words in so doing remains the same and only the mapping of data bits onto codewords
alters. Let us multiply a data polynomial h(z) by z = 2", coming to a polynomial
2"%b(z) of degree no greater than n — 1. If the remainder r(z) of its division by g(z) is
discarded (just added to z" ¥b(z) in the binary case), it becomes divisible by a generator
polynomial g(z), i.e. becomes a code polynomial. The last one:

u(z) = 2" *b(z) + r(2)
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corresponds to a systematic codeword, since the data bits are exactly k senior coeffi-
cients of z/%h(z), and r(z), with degree smaller than r = n — k, cannot affect them.

Example 9.2.2. Let us find a codeword of linear (5, 2) code with the generator polynomial
g(z) = 2+ 22+ 1, if data bits are by =1,b; =1. Then b(z) = z+1,z" ¥ b(z) = 2* + 25,
having remainder r(z) = z after division by g(z). Summation of z"~*¥b(z) with this remainder
leads to the code polynomial u(z) = z* + z° + z = zg(z) corresponding to a systematic word,
with the two last symbols being data bits.

9.2.3 Syndrome calculation and error detection

Suppose that word u of the linear code U is transmitted over the BSC. In an output
binary observation y the clements distorted by the channel will differ from those
transmitted, which may be written as:

y=u+e (9.5)

with e being the error vector, having zeros and ones at the places of undistorted and
distorted symbols, respectively. For instance, if the word u = (01011) from Example
9.2.2 is transformed by a BSC into the observation y = (11110), the error vector
e = (10101). In the same way as codewords, observation y = (yg, Vi,..., Vy—1) and
error vector e = (e, e1,..., ¢,_1) can be presented in the form of polynomials
@) =yua 2" 22" P44y and e(z) = e, 12"+ ey 22" 2+ -+ e, Then
(9.5) takes the form:

3(z) = u(z) + e (2)

Let g(z) be the generator polynomial of U. Remainder s(z) after division of observation
polynomial y(z) by g(z) is called the syndrome. Since any code polynomial is divisible by
g(z), the syndrome repeats the remainder of dividing the error vector e(z) by g(z).
Therefore, a non-zero syndrome always reports about the presence of errors in the
observation y, and error detection may be implemented as calculating a syndrome for
the observation y and deciding that error occurred whenever it is non-zero.

Certainly, not all error patterns are detectable, and any undetectable error vector is
always some code vector. Indeed, if e(z) is a code polynomial it is divisible by g(z) and
the syndrome is zero. Conversely, zero remainder tells only that e(z) is divisible by g(z),
but any polynomial of degree up to n — 1 divisible by g(z) is a code polynomial.

Example 9.2.3. Suppose that the transmitted codeword u = (01011) of the (5,2) linear code is
distorted by BSC into y = (11001), i.e. two symbol errors occurred. Dividing y(z) = z* + z + 1
by g(z) = z% + 22 + 1 results in a non-zero syndrome s(z) = z2, signalling the presence of
errors. On the contrary, if the observation were y = (11101), corresponding to three corrupted
symbols, the syndrome would appear zero: y(z) = z* 4+ 22 + z+1 = (z + 1)g(2), failing to
detect such an error pattern.




Channel coding in spread spectrum systems 285

Sometimes the ability of a linear code to detect errors is characterized by the share of
undetectable error patterns among all error patterns. Since there are 2" possible error
vectors altogether and only those repeating 2¢ code vectors are undetectable, the share
above is 270" = 277,

The linear codes just discussed and built on the basis of generator polynomials are
known as cyclic codes or shortened cyclic codes. When used to only detect (not to correct)
errors, they are often called cyclic redundancy codes (CRC).

9.2.4 Choice of generator polynomials for CRC

The share of undetected errors drops exponentially with the number of check symbols,
which may motivate using generator polynomials of high degrees. It should be remem-
bered, however, that check symbols present an overhead and increasing their number
above some reasonable level may be wasteful. CRC are typically used on higher system
protocol layers for checking the quality of data frames retrieved on the physical layer,
i.e. after resources of much more powerful error-correction codes have already been
utilized. Thanks to that, symbol errors met by CRC are rather rare and it is quite
unlikely that in the codeword with hundreds of symbols more than a few errors happen.
Thus, detection of up to three errors per codeword may often be considered satisfactory.
Let us describe the procedure of designing CRC meeting this requirement.

Take a binary primitive polynomial g(z) of degree m (see Section 6.6). An important
fact proved in algebra of extended fields is that a primitive polynomial of degree m never
divides any binomial z/ + 1 of non-zero degree / < 2" — 1 [30,32]. Then we may prove
the following statement.

Proposition 9.2.4. A linear code U with the generator polynomial g(z) = (z + 1)g1(2) of degree
m + 1 detects up to three errors whenever its code length n < 2™ — 1.

Because of the linearity of U (see (9.3)) and Proposition 9.2.1 it is only necessary to prove
that the minimal weight of a non-zero word of U is no smaller than four. Every code polynomial
u(z) being divisible by z+ 1 may be written as u(z) = q(z)(z + 1). Although z is a formal
variable, the latter equality should hold after substituting z =1 in both its parts, resulting in
u(1) = Up_1 + Up_2 + - - - + Up = 0, which means evenness of the number of non-zero elements
of a word, i.e. evenness of its weight. Assuming the existence of a word of weight two with non-
zero ith and jth symbols (j > i), we have a code polynomial u(z) = Z/ + z/ = Z/(1 + Z') not
divisible by g¢(z), since the latter, being irreducible, cannot have z as a factor and does not
divide 1 4+ Z~i(j — i < n < 2™ — 1) due to primitivity. Hence, the smallest weight of a non-zero
word of Uis four.

The choice of appropriate CRC generator polynomial is now straightforward. If the
desirable code length is n, then one should just find a primitive polynomial g(z) of
degree m > [log, (n + 1)] and the generator polynomial g(z) = (z + 1)gi(2) is ready.

CRC of this type are nothing other than quite popular Hamming codes (shortened
whenever n < 2" — 1) with all odd-weight words removed. In alternative applications
they are used to correct any single and detect any double errors.
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Example 9.2.4. Several CRC are used in 2G and 3G specifications [18, 69, 92]. The exemplary
one entering all three standards (cdmaOne, UMTS and cdma2000) has the generator polynomial
g2)=2%+2%24+254+1=(z+1)gi1(2), where g1(2) =20+ 2%+ 28 422+ A4 1 8472
+z+1 and is primitive. Similarly, generator polynomials of other CRC of those standards
(of degrees 30, 24 etc.) are factored into the binomial z + 1 and a primitive polynomial.

9.3 Convolutional codes

Convolutional codes are in common use in modern telecommunications as an effective
tool for securing reliable data transmission over noisy channels. Belonging to a more
general class of tree codes, they are distinguished inside it by the linearity of the encoding
algorithm. The difference between convolutional and block codes is rather fuzzy: any
convolutional code may be thought of as a block code of a properly large length. It is
more satisfactory to see the peculiarity and the reason for the extreme popularity of
convolutional codes in their recurrent nature, which allows a much more feasible
error-correction decoding procedure (Viterbi algorithm) as compared to the others.

9.3.1 Convolutional encoder

The idea of a convolutional encoding may in general terms be described as follows. Take a
block (vector) of v, consecutive bits of a source and convert it linearly into n > 1 output
binary code symbols occupying time space of one source bit. The linearity as applied to
vectors with components from GF(2) means just modulo 2 summations of selected
components. After this, update a block of source bits, inserting one new bit and discarding
the oldest. We again have a block of v, source bits, this time lagging the initial one by one
bit (and containing v, — 1 former bits and a new one), which is encoded to the new n code
symbols. These steps are continuously executed one by one, each time involving a new bit
and dropping the oldest. Figure 9.2, where v, = 3,n = 3, illustrates the procedure: the
encoder watches a source bit stream through the sliding window of width v, and encodes
all bits currently seen into n code symbols. After every step the window moves by one
source bit and the next step is accomplished. The number of source bits v, determining the

v, bits window One bit duration

[ it ey Bit stream

1 Ir—Mr—H r—M
LT P e HEEERERERNNEEIR
E‘}”'i"‘ifl Codestream ~ 7
S N /
n code symllaols n code symbols n code symbols

Figure 9.2 Convolutional encoding
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Figure 9.3 Convolutional encoder

code symbols at one step is called the constraint length. The principle described can be
implemented as shown in Figure 9.3, where the shift register containing v. — 1 flip-flops
stores v, — 1 previous source bits. Along with the incoming bit, they are fed into the linear
logic circuit consisting of #» modulo 2 adders. The output of every flip-flop and encoder
input may or may not be connected to each adder (that is why the links are marked as
dashed lines), the scheme of connections determining the concrete dependence of output
code symbols on v, source bits, i.e. the encoding rule. With a current source bit b; arriving
at the input n code symbols u], u?, ..., u} appear in parallel at the adders’ outputs. After
every clocking, the bit pattern in the register shifts to the right by one cell, preparing
the circuit to generate the next n code symbols. The output switch running through n
positions during one bit space converts the code symbols from a parallel to a serial pattern,
creating an output codestream u}, u3, ..., ug, ul,u3, ... uf, .. .. It is seen that the encoder
of Figure 9.3 in the steady state responds to every new source bit by # code symbols
(see also Figure 9.2), so that its code rate R, measured in bits per code symbol is 1/n.
The example below helps to explain better the principle of convolutional encoding.

Example 9.3.1. Figure 9.4 illustrates the implementation of the convolutional encoder with the
constraint length v, = 3 and rate R, = 1/2. Input bits by, by, ... produce two streams of code

Source bits Code symbols

12 12
bos bys ... p Uy Ujyy Uiy UTs -

Figure 9.4 Convolutional encoder of rate 1/2
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symbols u, ul,... and u2, u2,..., which are then multiplexed so that u! and u? occupy,
respectively, even and odd positions in a common codestream. For instance, a bit stream
{b;} =10100100... produces sequences {u'} =11011111... and {u?} =10001101...
which are then multiplexed into a codestream {(u}, u?)} = 1110001011111011 ...

The following question sounds natural: are rates R, other than 1/n, i.e. equal to k/n,
where 1 < k < n, possible with convolutional encoding? There are two classical ways
of solving this task. The first of them just generalizes the principle above: at every
step kv, bits rather than v, are linearly transformed into n code symbols, after which k&
oldest bits (instead of one) are replaced by k£ new ones and the encoder proceeds to the
next step. The second way, called puncturing, uses rate 1/n code as the raw material
and removes some of its code symbols according to a pre-assigned pattern. The punc-
turing, when arranged properly, reduces the number of code symbols per data bit,
providing rate k/n. For reasons of implementation feasibility puncturing is frequently
considered preferable, accentuating further a dominant interest towards the codes of
rate 1/n. We will follow this line and focus further only on the convolutional codes
of rate 1/n.

Clearly, a circuit including a shift register and an individual modulo 2 adder with all
its connections is nothing but an FIR filter (see Figure 6.20) outputting the convolution
of the input bit stream with the filter pulse response, which explains the name of the
codes under study. This also underlies one of the convenient ways to describe formally a
convolutional encoder. The convolution relating a code symbol «! (i.e. appearing at the
I/th adder output when a bit b; arrives) to the input bit stream is:

v.—1

wp=> big, i=01,..;1=12..n (9.6)
=0

where g/ = 1 if the /th adder is connected to the tth flip-flop (¢ = 0 corresponds to the
encoder input) and g/ = 0 otherwise; b; = 0 whenever i < 0. An appropriate frequency-
domain instrument for discrete systems is z-transform, which was mentioned in the previ-
ous section. A convolution corresponds in the z-domain to a product of z-transforms, so
that (9.6) takes an equivalent form:

o0

ul(z) = Zuﬁzi =b(z)g(z), I=1,2,...,n (9.7

i=0

where b(z) = Y72 b;z' is a z-transform of an input bit stream and:
a(z)=gh+eiz+.. .gi@_lz”“_l, 1=1,2,...,n (9.8)

is a transfer function of the /th FIR filter (i.e. forming the /th code symbol) called also

the /th generator polynomial of a convolutional code. The set of n generator polynomials

determines a convolutional code exhaustively, since their non-zero coefficients specify
connections of adders with a shift register.
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Example 9.3.2. The encoder shown in Figure 9.4 has generator polynomials g;(2) = 1 + z + 22
and g»(z) = 1 4 z2. Make sure that sequences of code symbols cited in Example 9.3.1 may be
obtained from (9.7).

Putting g,(z) = 1 leads to a systematic convolutional code, in which bits of source data are
directly seen on definite positions. The trouble, however, is that within the fixed structure of
Figure 9.3 systematic codes are usually not the best ones as regards error correction
capability (see Problem 9.15). This underlies modifying the shift register of a convolutional
encoder to a feedback structure when the systematic property is critical. We will have to
revisit this matter in more detail on familiarizing ourselves with turbo codes in Section 9.4.1.

9.3.2 Trellis diagram, free distance and asymptotic coding gain

The shift register of a convolutional encoder has 2%~! possible states and there are only two
states where it can pass from a current state after clocking. It is an incoming source bit b;
that selects one of these two paths. When a state of the register on the ith clock interval is

(bi—1,bi—2,...,bi_, 1), then the next state will be either (0, b;_i, ..., b;_,,+2), if the incom-
ing source bit b; = 0, or (1,b,_y, ..., b;_, +2), if b; = 1. Similarly, the register comes to the
state (b;, bi_1,...,bi_y42) if the previous state was either (b;,_1,b;_2,...,bi—,42,0) or

(bi—1,bi—2,...,bi_y42,1). To depict schematically all these details of register behaviour
the trellis is an appropriate tool. It includes two columns of 2%~! nodes, the left column for
the current state and the right for the next one. The branches (arrows) go out from each
node of the left column to two nodes of the right, solid and dashed branches showing paths
selected by incoming bit zero and one, respectively. In the same way, two branches enter
every node of the right column, being both either solid (zero input bit) or dashed (input bit
equalling one). Every branch is labelled by an n-tuple which is nothing but a group of n code
symbols issued by the encoder when an input source bit directs it from one state to another.

The example below clarifies the method of building the trellis for the convolutional
encoder of Figure 9.4.

Example 9.3.3. The four states of a two-cell register starting with the left flip-flop are: (00), (10),
(11) and (01). Figure 9.5 presents the trellis built as described. For instance, the branch from

(00) (00)

(10) e (10)

an

Figure 9.5 Trellis of encoder of Figure 9.4
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(10) to (01) is solid, while the one to (11) is dashed, code symbols 01 label the branch leading
from (11) to (01), since with ones in both cells and zero input bit the upper adder outputs zero,
while the lower outputs one, etc.

During every clock interval the encoder moves along some branch of a trellis issuing
code symbols labelling the branch. Tracing this process in a diagram presented as in
Figure 9.5, one has to jump from the right column to the same node in the left column at
every next step. To escape this, let us just repeat the trellis as many times as is wished
using the right column of the current step as the left one for the following step. Then
encoding will be identified with a motion along the obtained trellis diagram, the current
input bit directing the encoder along a solid or dashed branch depending on whether it is
zero or one. To illustrate this, let us turn to Figure 9.6, which presents a trellis diagram
for the code of Example 9.3.1. Every candidate sequence of input data bits selects a
specific path on the trellis diagram, which we may trace, e.g. for the sequence
{b;} = 10100100.... Its first bit is 1, which directs the encoder from the node (00) to
the node (10), issuing output code symbols 11; the second bit 0 transfers the encoder
from (10) to (01), generating code symbols 10; the third changes the state from (01) to
(10), outputting 00 and so forth. The thick line shows the resulting codeword:
1110001011111011.

It was already noted that one might treat a convolutional code as the block one of
a properly long length. The codewords of this latter block code are just different paths
on the trellis diagram, the minimum Hamming distance over all pairs of them giving a
code distance. In its turn, the code linearity simplifies the task of finding code distance:
on the strength of Proposition 9.2.3, the minimum distance between paths is the least
Hamming weight over all non-zero words. Suppose now that an encoded bit stream
is terminated after some large enough (no smaller than v,.) number of bits and padded by
v, — 1 tail zeros to set the register to the all-zero state. Realized practically (one example
is cdmaOne), this padding would not insert a material overhead whenever the length
of an encoded bit stream is many times larger than the constraint length. On the
other hand, the padding makes all the paths converge to the all-zero register state, as
Figure 9.6 shows for the code of Example 9.3.1. If we take a padded bit stream starting

(00) & 00 e 00 , o 00 00 00 00 00 00
11 \
N\
(10) ® °
(01) ® °

an e

- > @ — - > @ —— - > O~ —— — >
10 10 10 10

Figure 9.6 Trellis diagram of encoder of Figure 9.4
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with some number 7y of zeros followed by bit ‘1’ and replace these ny initial zeros to
the end of the stream, we just move a corresponding path on the diagram by ng steps
to the left with no change of its weight. After such a shift the path diverges from the
zero path at the very first step and merges with it no later than ng steps before the last
tail zero. Along this path several returns to zero and further diverging may happen
(see Figure 9.7), each of them only increasing the path weight. Since the objective is to
find the minimum weight, any deviations from the zero path but the first one should be
ignored. Summarizing, we conclude that to find the distance of a convolutional code one
ought to investigate only the paths deflecting from the zero path at the origin of the
trellis diagram and having no deviation from the zero path after the first merging with it.
In the theory of convolutional codes this entity is traditionally called the free distance.
Denoting it dr we see, for example, that among all the paths in Figure 9.6 with only a
single deviation from the zero path the codeword 11101100 ... encoding a bit stream
100... has minimal weight, so that dy = 5. Certainly, free distance dr guarantees

correcting any {@J symbol errors (see Proposition 9.2.2); however, typically many

patterns with a greater number of errors are corrected, too. There are only a few
examples of effective algebraic rules for convolutional encoding. The majority of known
convolutional codes with good correction capability are found by a computer search
[31,33,93].

Due to the specificity of the encoding algorithm, finding all possible weights of words
(weight spectrum) of an arbitrary convolutional code proves to be not so analytically
difficult as it is for many linear block-codes. In particular, directly from the trellis
(or, equivalently, state diagram) a system of linear equations is made up, the solution
of which leads to an explicit expression for a weight spectrum [2,7,93].

Coding gain, which shows how many times signal energy per bit or signal power can
be reduced as a result of encoding, error probability fixed, is a universal measure to
characterize the efficiency of one or other code. We discussed this notion in Section 2.6
applied to orthogonal signalling and noted that the asymptotic coding gain for the case
of the AWGN channel is the gain in Euclidean distance. With BPSK transmission every
discrepancy in symbols of two signals adds to their squared Euclidean distance 4E;,
where E is symbol energy. There is a pair of words of a convolutional code having dy
different symbols and no pair with smaller discrepancy (Hamming distance). Therefore,
the minimum squared Euclidean distance between BPSK-mapped convolutional code-
words d? = 4dy E,. At the same time (see Section 2.6) a similar quantity for uncoded

min, cc
transmission d2. = 4E, resulting in asymptotic coding gain of a convolutional code:

min, u

d2; d/E
Gu _ min, cc if Lig _ dch
a2 E, 7
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Figure 9.7 Diversion and merging of paths
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code rate R, being measured in bits per symbol. For the code of Example 9.3.1
R, =1/2,dy =5, so that G, = 2.5 or about 4dB. We remember once again that G, is
derived for the AWGN channel (not BSC!); in other words, for the case of soft
decoding. Hard decoding degrades this figure by 2-3 dB depending on code parameters
and symbol SNR [31,33].

9.3.3 The Viterbi decoding algorithm

As was mentioned, among the reasons for the great popularity of convolutional codes
the existence of a feasible decoding algorithm is of special importance. Let us begin with
the following statement.

Proposition 9.3.1. The ML hard error-correction decoding of a binary code is equivalent to the
minimum Hamming distance rule:

ady(a,y) = mi(r) dy(u,y) = U is declared the received word (9.9)
uc

As one can see, the rule is very similar to (2.3) with a single change: in the case of BSC the
Hamming distance replaces the Euclidean one, adequate for the AWGN channel. To prove
(9.9) it is enough to note that (9.1) rewritten as:

ay(uy)
pylu) = pHe0 (1 py e — (L2 g -yt
is nothing but the BSC transition probability, i.e. the probability for the sent code vector u of
length n being transformed by BSC into a binary observation y. Since the crossover probability
of BSC p < 0.5, the transition probability p(y|u) is a decreasing function of the Hamming
distance from an observation y at the BSC output to a code vector u, and, therefore, the ML
codeword U is the one closest to y by the Hamming distance.

A direct realization of (9.9) for an arbitrary code appeals to comparison of M
Hamming distances from y to all codewords. Since M is typically quite large such a
solution might appear infeasible. On the contrary, because of the beneficial structure of
convolutional codes the ML decoding is not a big technological challenge, at least if the
constraint length is moderate.

The Viterbi decoding procedure implements the ML strategy in a recurrent, step-by-step
form of searching a path on the trellis diagram closest to the binary observation y. Every
new decoding step starts with the arrival of the next group of n observation symbols. At
the ith step the decoder calculates the distance of n incoming observation symbols from
every branch of a trellis diagram and increments the distances for all paths calculated
over the i — 1 previous steps. One might work out the distances for an arbitrary code
similarly, as new observation symbols arrive, but it is the recurrent nature of a convolu-
tional code that makes this routine computationally economical due to the immediate
discarding of many paths at each step.
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Steps:

Figure 9.8 Paths going through node A4 at the ith step

Consider all paths passing through a fixed node A4 at the ith step, as shown in Figure 9.8.
Continuation of any path after the ith step does not depend on the route of arriving at 4,
so that different paths reaching 4 may further merge with each other. But this means that
of all the paths going through 4 and continuing the same way after the ith step the one
having minimum distance from y up to the ith step will remain closest to y forever, since a
common continuation adds an equal contribution to all distances! Why then go on with
computing distances for the rest as soon as it is clear that they have no chance of finally
appearing closest to the observation? Instead we discard them, retaining only the one
reaching the node 4 with minimum distance. This latter is called a survivor and for the
time being we believe that there is only a single survivor for every node of the trellis
diagram at the ith step (see comments below). The current, i.e. calculated over all
observed symbols up to the ith step, distance of the node A survivor from y is called
the node metric of A.

Now recall that there are only two branches entering any node; Figure 9.8 shows this
for some node A. Two branches enter it from two nodes B, C of the previous step and,
therefore, continue the survivors of B and C. We may calculate the distances of two paths
reaching A by just measuring the branch metrics, i.e. the distances of branches from the
arriving group of n observed symbols, and adding them to the node metrics of B and C.
The path with smaller distance is declared the survivor of 4 and is recorded in memory
along with its distance (node metric) while the other is discarded. On performing these
operations for all nodes of the trellis diagram the decoder proceeds to the next step.

To summarize briefly, the Viterbi decoder calculates branch metrics at every step, adds
them to all the node metrics accumulated before and then sifts out the more distant of two
paths leading to every node. Since there are 2*~! nodes (i.e. register states) altogether, the
complexity of the decoder is determined only by the constraint length v, and remains fixed
independently of the theoretically unlimited number of codewords (paths).

Coming back to our assumption on the uniqueness of a survivor for every node, note
that since Hamming distance is integer, the probability always exists that two paths
leading to the same node have equal current distances from y. Different strategies are
possible to solve ambiguity of this sort. One of them is just a random choice: assigning
tails of a fair coin to one of the paths and declaring this one the survivor if tails really
falls after flipping the coin. This certainly violates the decoding optimality, although the
accompanying energy loss is typically insignificant. Alternatively, both competitive
paths may be declared survivors and recorded in memory until further steps remove
the ambiguity. The latter option preserves decoding optimality at the cost of involving
extra memory.
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Example 9.3.4. Consider decoding the observation y = 0100110000 . . . for the code of Example
9.3.1. Figure 9.9 illustrates the process with node metrics placed immediately near the nodes,
frames containing the pairs of observation symbols arriving at the current step. The decoder
starts the process assuming zero (i.e. (00)) initial state of the encoder register. The starting
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Figure 9.9 Dynamics of decoding for the convolutional code of Example 9.3.1
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ve — 1 =2 steps correspond to transient behaviour of the encoder register, when only one
branch enters every state (see Figure 9.6) and so all paths are survivors. At the first step the
decoder compares the first group of n = 2 observation symbols with two branches emanating
from the state (00). According to their Hamming distances from the observed symbol group 01,
both the solid and dashed lines obtain metric 1, shown near the branches. Consequently, the
node metrics of the two nodes, at which the branches arrive, both become equal to one. At the
next step the distance is measured between the second group of observation symbols 00 and
two pairs of branches emanating from nodes (00) and (10), resulting in the metrics labelling the
branches. Added to the node metrics of the previous step, they update the metrics of nodes (00)
and (10) and produce the metrics of two more nodes (01) and (11). Starting with the third step
two branches enter any node of a trellis diagram of Figure 9.6, meaning that the decoder must
decide which of them is a survivor. We do not show in Figure 9.9 the metrics of the branches
beginning with this step in order to avoid clutter. As is seen, there are two paths leading to the
node (00) at the third step. Their distances from the observed symbols 010011 are 3 and 2,
respectively. The first is not a survivor and the decoder discards it along with its metric, so it is
crossed out and not present at the plot of the next step. The second is a survivor, and is
recorded in memory with its metric until the next step. In the same way, the decoder finds the
survivors for the rest of the nodes. The decoding proceeds similarly at further steps, storing in
memory only 2"~ = 4 survivors, and every plot of Figure 9.9 depicts only the paths declared
survivors at the previous step.

At step 7 the decoder first runs into the problem of ambiguity: two paths arrive at the node
(01) with equal distances, and the same occurs with the node (11). The choice of survivors
illustrated by the figure reflects some realization of flipping a fair coin. The same events happen
at steps 8 and 9. The reader is encouraged (Problem 9.19) to make sure that any alternative
resolving of the ambiguity will not change the final result of decoding except for the step number
when the decoded bits are first released (see below).

The situation after the ninth step is very important: all paths appear to merge with each other
up to the seventh symbol group. Whatever happens afterwards, this part of all merging paths
will remain common forever, meaning that the data bits corresponding to it may be released
right away as decoded ones. Hence, the decoder produces the decoded data 1000000.
Comparing the codeword u = 11101100000000 .. .corresponding to it with the observation
y =0100110000...we may note that the Hamming distance between them is 2, and if a
transmitted word was really the one declared by the decoder, two errors were corrected, in
full consistence with free distance df = 5. Similar situations will arise at further steps, allowing
the decoder to release decoded bits in the course of processing an observation symbol stream.

Certainly, outputting the decoded data at random moments of the merging of survivors,
as in the example above, looks impractical, and a more regularly arranged procedure is
desirable. It has been repeatedly verified by experiments and simulation that during the ith
decoding step the merging part of all survivors almost never ends after the data bit number
i — Sv,, so the decision on every bit may be regularly output with delay 5v, [94].

A very significant feature of convolutional codes making them even more attractive is
the comparative simplicity of implementing soft decoding. In a general case of a block
code with M words the soft decoding means direct calculation of M Euclidean distances
or correlations, no algebraic tricks like syndrome decoding being available. With a
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gigantic M typical of many applications this often makes the task completely infeasible.
At the same time the penalty for simplifying the receiver using a hard decoder is energy
loss varying for the AWGN channel around 2dB: a figure today considered pretty
significant. Turn now to the Viterbi algorithm and replace the Hamming distance in it
by a (squared) Euclidean one. Obviously, it converts the decoding into a soft one,
optimal for the AWGN channel. The branch and node metrics then become just the
corresponding Euclidean distances (or correlations). Such a modification by no means
affects the implementation advantages of the Viterbi algorithm. Indeed, the node
metrics are calculated in a recursive way as before through step-by-step incrementing
by branch metrics, and the path entering a node with worse metric than the other may
again be discarded at every step as a non-survivor.

Certainly, digital realization of decoders is mostly appropriate, presuming quantizing
input observation. It is a conventional trend to classify decoders of binary codes
involving quantization with more than two levels as soft ones. A profound analysis
shows that in the majority of cases 3-bit (8-level) quantization is enough to achieve
almost the potential (characteristic of continuous processing) performance [94].

9.3.4 Applications

Many efficient convolutional codes are now known and the range of their telecommuni-
cation involvement is extremely vast. In particular the 2G cdmaOne and 3G UMTS
standards exploit codes of constraint length v, = 9 and rates R. = 1/2, R. = 1/3 provid-
ing asymptotic coding gain about 7.8dB [18,69,92]. The 3G cdma2000 standard, in
addition to those above, employs the code with parameters v, =9, R. = 1/4. Beyond
their own significant value convolutional codes constitute the basis for turbo codes,
which near the Shannon limit on data transmission reliability. These are discussed
briefly in the following section.

9.4 Turbo codes

As we mentioned in Section 9.1, despite a very strong endeavour for decades following
the advent of Shannon’s information theory the attempts to find regular coding rules
securing reliable data transmission near channel capacity remained unsuccessful. In this
light, the discovery of turbo codes in 1993 was a fascinating breakthrough, first met by
the communications community with understandable disbelief. Nowadays, however,
turbo codes are widely recognized as a very efficient means of high-quality communica-
tions especially at low SNR per data bit. An accurate and compact theory of this class of
codes remains something of a holy grail; intuition combined with extensive computer
search has played a significant role in obtaining many results up to now.

9.4.1 Turbo encoders

The other name of turbo codes is parallel concatenation convolutional codes, which
reflects the core idea of the encoding algorithm: two parallel (component) convolutional
encoders encode the same source data bit stream [95,96]. The component encoders are as
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a rule identical, i.e. have the same constraint lengths and sets of generator polynomials.
The first of them encodes the data directly, and before arriving at the second the data bit
stream undergoes interleaving. This operation just permutes the data bits in a pseudo-
random fashion within a block of fixed length 1.

As was noted in Section 9.3.1, among the convolutional codes based on the FIR
structure of Figure 9.3, there is no equivalence between systematic and non-systematic
codes, non-systematic ones being typically more powerful as to the distance properties. At
the same time, the decoding principle associated with turbo codes and imparting special
attractiveness to them appeals to systematic component encoders. Exploiting infinite
impulse response (ITR) in place of the FIR structure opens the way to forming a systematic
convolutional code containing the same words, and therefore having the same distance
properties as the non-systematic code. To explain it, start with the encoder of Figure 9.3
described by a set of generator polynomials g;(z),/ = 1, 2, ..., n and establish a one-to-one
mapping between two bit streams b(z) and bi(z) as b(z) = bi(z)gi(z). Turn then to
equation (9.7) and see that for an input bit stream b,(z) it may be written in the form:

u(z) = bi(2)gi(z) =

ga(z), l=12,...0n (9.10)

showing that the structure capable of dividing source bit stream b(z) by gi(z) before
inputting the FIR scheme of Figure 9.3 would encode b(z) into the same convolutional
codewords as the FIR encoder itself. The only difference is that the codeword assigned
earlier to b;(z) is reassigned now to b(z), which—considering the equal rights of any
source bit streams—is of no significance as soon as the decoder knows this new
correspondence order. But after such an operation all the codewords become systematic,
since uj(z) = b(z)! The feedback register in Figure 9.10 implements the division by
gi(z) =gl +g! 7'+ ...+ 1, where r = v. — 1. Indeed, according to the general rule

b(z)
(by, by, ...)
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Figure 9.10 Systematic convolutional encoder
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applicable to any linear system (one example of it is (8.26)), the z-domain transfer
function hy(z) of the closed feedback loop is expressed (using equivalence of addition
and subtraction in binary arithmetic) as [2,7]:

_ h)
1+ B(2)h(z)

h(z) and ((z) being the transfer functions of the open loop and feedback circuit,
respectively. Considering the output of the leftmost adder of Figure 9.10 as the output
of a closed loop, we have h(z) = 1, B(z) = glz + g}z> + -+ - + g 2" so that /(2) = 1/g1(2).
Since the divided bit stream b(z)/g;(z) is present directly at the register input, the check
symbol logic fixed by polynomials g,(z), / =2,...,n may be connected to the same
register for a further ordinary convolutional encoding. Summarizing, in a systematic
feedback encoder a source bit stream gives directly a stream of data bits u;(z), while
check symbol streams u;(z), / =2,...,n are formed by the same logic as in Figure 9.3
but connected to the feedback register. Figure 9.11 presents the example of transforming
the non-systematic encoder of Figure 9.4 to a systematic form.

The complete structure of a turbo encoder includes two such systematic encoders and an
interleaver, as is shown in Figure 9.12 for the component encoders of rate R, = 1/2. The
‘direct’ data bits from the second component encoder are discarded and only its check bits
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Figure 9.11 Systematic convolutional encoder for the code of Example 9.3.1
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are used. Thus, if the component convolutional codes are of rate R, = 1/2, the resulting
turbo code contains two check symbols u?, u? per data bit b;, i.e. has the rate R, = 1/3.
If desired, its rate may be increased to 1/2 by transmitting only one check symbol per data
bit taken alternately from the component encoders. The interleaver permutes data bits
within the block of length /. Typically v, — 1 tail bits are used to set the first component

encoder to zero and a turbo code is treated as the block code carrying 7 information bits.

9.4.2 Iterative decoding

Although a turbo code consists of two convolutional codes its optimal decoding cannot
be realized as two independent Viterbi procedures, since the paths on the component
trellis diagrams are related to each other via the same (though interleaved) encoded
data. The pioneers of turbo coding [95,96] proposed the use of an iterative version of the
maximum a posteriori probability (MAP) rule applied not to a codeword but instead to
every information (not check!) bit. Its description below presents only a general idea; the
reader curious about details may consult [96,97].

A posteriori probabilities p(b; = O|y) and p(b; = 1|y) show the likelihood of one or the
other value of the ith data bit calculated on the basis of observation vector y. They
concentrate in themselves complete knowledge about b; delivered by y and extracted from
it. In the case of reliable communication, one of these probabilities is close to unity, while

the other is almost zero. Naturally, a MAP decoder will output as an estimation b; of the
ith data bit the value with greater a posteriori probability, following the rule:

_ p(bi = 0Jy) s0

A=
p(bi=1Jy) <

(9.11)

The recurrent algorithm for calculating bit a posteriori probability was developed in [98].
In the case under study the data bit b; is physically present in observations due to systematic
encoding. On the way forward the recurrent MAP algorithm computes a posteriori prob-
ability of b; using all observations before and including this bit. After all the observation
samples are received it goes back and refines the results, incorporating information
extracted from the observations arriving later than ;. Thus, after passing forwards and
backwards, the a posteriori probabilities for all data bits may be found. To run this
algorithm one needs the trellis of the code, channel transition probability and a priori
probability distributions ¢(b;) for every data bit. Certainly, there would be no problem in
applying it individually to each of the two component convolutional codes constituting
a turbo code. The core of the turbo code, however, is encoding the same permuted data by
the two component codes, so that information about b; could be retrieved from both of
them jointly. The iteration process arranged as shown in Figure 9.13 meets this demand.

The complete observation vector at the receiving side may be split into three vectors:
y,=w+n, [=1,23 wherew = (ub,ul,...ul, |),ul =b;is the vector of data bits b;
directly present in any codeword due to the systematic character of turbo codes, u, u;
are vectors of redundant symbols of the first and second component encoders, respect-
ively, and n; are vectors of independent noise samples.

At the first step the decoder of the first component code calculates a posteriori prob-
abilities p(b;|y;,y,) of all I data bits b; using observations y,, y, associated with the data
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Figure 9.13 Iterative turbo decoder

and check symbols of this code. As initial information it uses a uniform a priori distribution
qi(b;) = 1/2,b; = 0, 1, since setting all data bit patterns a priori equiprobable is natural.
After this, the decoder of the second code computing a posteriori probabilities p(b;|y;, ¥3)
may rest not only on appropriate observations y;, y; but also on the information delivered
by the first decoder, using its a posteriori distribution p;(b;|y,,y,) as the a priori one:
¢3(bi) = p1(biy;,Y,). The result is the first approximation p;(b;|y) of a posteriori distribu-
tion p(b;]y). Since at this step the first decoder was not supported by the information of the
second one, this is done at the second iteration, where the first decoder again decodes the
first component code but using a priori distribution ¢}(b;) = pi(b;]y). Going on in this way,
after the nth step the next approximation p,(b;|y) of p(b;]y) is formed by the second decoder
and used by the first one as the next a priori distribution ¢/ 11(b) to output p,1(bily;,¥,).
This latter in its turn is used by the second decoder as the next a priori distribution ¢> 1)
to produce the next approximation of the desired a posteriori probabilities p,.1(b;]y), etc.
Since the interleaver permutes data bits before inputting the second encoder the interleavers
permute in the same way observations y, and a priori distribution ¢2(b;) = pu(bi|y;,¥,)
entering the second decoder. Similarly, the deinterleaver restores the original order of bits in
a feedback passing on p,(b;]y) from the second decoder output to the first decoder input.
With these rearrangements, all data processed by both decoders are aligned properly.

A vast simulation has confirmed the convergence of these iterations experimentally,
although theoretical justification remains a matter of question.

9.4.3 Performance

As mentioned before, turbo codes were the first regular codes to provide reliable data
transmission over the band-limited channel at near-capacity rates and low energies per
bit. To illustrate it by examples, let us first examine some fundamental limits on BPSK
data transmission. On the strength of the sampling theorem any bandpass signal
of bandwidth W is a vector of dimension 2WT (see Section 2.3). In the case of BPSK
each component of such a vector may take on only two values, implying that within the
time—frequency resource W7 the number M of BPSK signals obeys the bound
M < 22"T or equivalently, no more than 2WT data bits may be transmitted. This
restricts the transmission rate achievable with BPSK within the bandwidth W as
R=(logM)/T <2W, imposing, in its turn, the bound on the rate per Hertz:
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R/W < 2bps/Hz. Now consider a binary code with rate R, = 1/2, meaning that only
every second component of a signal vector carries data, the rest being assigned to check
symbols (two signal samples are spent per data bit), so that the ratio between data rate
and bandwidth R/W = 1bps/Hz. Turning to Shannon’s bound (1.2), we may see that
the minimum bit energy normalized to noise Ep/ N, (half of power bit SNR) necessary to
provide errorless transmission over an AWGN channel at such a rate equals 0dB.
We are, however, now dealing not with an arbitrary Gaussian channel but with
one whose input symbols are limited to the BPSK alphabet (Gaussian channel with binary
input). This restriction increases the minimal E,/ N, corresponding to R/W = 1 bps/Hz up
to 0.19dB [97]. The turbo code of constraint length 5 and block length 65 536 proposed in
[95,96] secures bit error probability P, < 107> (this figure is often referred to as the
practical criterion of wireless errorless operation) at E,/Ny = 0.7dB, i.e. yielding only
about 0.5dB to Shannon’s limit. At the moment of their publication these results seemed
fantastic, since a long unsuccessful history had made many experts believe that finding
deterministic coding rules allowing operation near Shannon’s bound was a hopeless task.
Following the original works [95,96], other efficient turbo as well as serial concatenation
codes have been found (see bibliography in [97]).

It should be noted that the asymptotic (Ep/Ny — oc) behaviour of turbo codes is not
better than that of convolutional codes of the same rate and memory, since they do not
possess any advantage in minimum distance. Turning to (2.23), we may see that asymp-
totically (with growth of SNR) the effect of multiplicity iy, i.e. the number of signals
with minimum Euclidean distance dp,;, from a transmitted one, plays a secondary role
against dp;, itself due to the exponential drop of the Q-function with SNR (take the
logarithm of P, to make sure of it). For this reason dependence of P, on E/N, sooner or
later achieves a ‘floor’ character determined by dp;, and analogous to the one typical of
other codes with the same minimum distance. This, however, occurs at SNR values
securing very small bit error probabilities, falling far beyond the range of practical needs.
The explanation of why turbo codes guarantee such excellent operational quality at low
bit SNR is not in their large minimum distance, but rather in the relatively small number
of words lying from each other at small distances, in particular the small multiplicity
nmin 10 (2.23). This redistribution of distances towards a greater number of bigger ones
versus convolutional codes happens due to the pseudorandom interleaving of data bits
encoded by the second component encoder. If the data bit pattern is unlucky to generate
a small-weight word of the first component code, its permutation may appear different
enough to produce the second component word of a remarkably higher weight.

9.4.4 Applications

Despite their short history, turbo codes are now in widespread use and enter the
specifications of many systems. The most interesting in our context is their involvement
in 3G mobile radio standards. The UMTS specification includes turbo codes of rate 1/3
based on two component convolutional codes of constraint length 4 and interleaver of
variable length in the range from 40 to 5114 [92,97]. The cdma2000 standard also
contains two-component turbo codes of constraint length 4 with interleaver size ranging
from 250 to 4090. Appropriate puncturing allows rates of 1/2, 1/3, 1/4 or 1/5 to be
obtained [69,97].
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9.5 Channel interleaving

The analysis above rested on the memoryless model, where corrupting effects inflicted
on the code symbols by channel interference were independent of each other. In real
wireless channels with their shadowing and fading phenomena (see Section 3.5), these
additive memoryless effects are supplemented by multiplicative ones: comparatively
slow and sporadic drops of a received signal level spanning many code symbols. The
technique outlined below is universally relevant regardless of soft or hard decoding
mode, but to make the discussion more transparent let us specify a hard decoding
procedure. When AWGN is the only channel interference all symbol errors are inde-
pendent and are randomly scattered along the codewords. Signal drops due to fading
cause grouping of symbol errors into packets or bursts. Certainly, if length B of the
burst is no greater than the code correction (detection) capability 7. (¢;), the decoder will
with no difficulty correct (detect) B errors, since the specific pattern of errors within the
code error control capability is of no matter. The fading nature, however, often leads to
rare but rather long error bursts, so that meeting the condition B < ¢, would require
codes with a large check symbol overhead, i.e. small rate and wasteful bandwidth
utilization. An efficient and feasible alternative is the very popular channel interleaving,
under which symbols of the codestream are permuted before transmission to disperse as
far as possible those positioned close to each other and, on the other hand, make closer
those positioned far apart. At the receiving side deinterleaving takes place, returning all
the code symbols to their initial positions. If a burst of errors of length B occurs in the
channel, corrupted symbols after deinterleaving will prove to be far from each other as
though the errors were independent. If block codes of appropriate length and distance
are used these errors will with high probability fall into different words to be corrected
by the decoder. With convolutional codes the chance of their correction will again be
good, since such codes correct many patterns of errors counting beyond the free
distance, unless they gather into too dense packets. The simplest implementation of this
technique is a block interleaver writing symbols into a square matrix row by row and
then reading them out column by column. Of course, the deinterleaver rearranges the
symbols in the reverse manner.

Interleaving is an integral part of the majority of modern digital wireless communi-
cation systems, including all 2G and 3G mobile standards.

Problems

9.1. A binary block code of length n =9 is used for transmitting M = 32 messages.
How many check symbols does it have? What is its rate? What is the number of
redundant binary observation vectors?

9.2. A binary block code has minimum Hamming distance dy = 7. What is its min-
imum Euclidean distance if binary symbols are transmitted in FSK mode by
non-overlapping pulses of energy E,?

9.3. The binary block code U = {10101,00011, 11000,01110} is used for data transmis-
sion over BSC. The observation vector is Y = (00110). Into what code vector will it
be decoded with error correction? What would be the answer for Y = (11011)?
What are the correction and detection capabilities of the code? Is this code linear?
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94.
9.5.

9.6.

9.7.

9.8.

9.9.

9.10.
9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

Prove Proposition 9.2.2.

What should the minimum distance of a binary code be to correct up to ¢. errors
and above it to detect up to 4 > t. errors?

Find the number of binary vectors having weights no greater than 7, (volume of a
binary sphere of radius #;).

Using the result of Problem 9.6 prove the Gilbert bound: a binary block code
detecting up to 4 errors always exists whenever:

14
(M-1)) Cp<2
i=0

where M, n are the number of codewords and code length, respectively.
Calculate the result of the following operations over binary polynomials:

O =E+2+DE+1) =+ D) E - D+ 4 7

Open the brackets in the binary polynomial (z + 1)*> where i is a positive integer.
Find the remainder of dividing z° + z* + 1 by z> + z + 1 over GF(2).

Let g(z) be a binary polynomial of degree r. Prove that the binary block code of
length n using this generator polynomial (having code polynomials
u(z) = b(z)g(z), data polynomials b(z) being arbitrary binary polynomials of
degree no greater than n — r — 1) is linear.

The binary polynomial g;(z) = z* + z + 1 is primitive. What is the largest length
of CRC detecting up to three errors based on this polynomial? Will the observa-
tion polynomial y(z) = z8 4 z° 4+ z + 1 be declared erroneous or not? What about
the polynomial y(z) = 28 +z* +z + 1?2

The generator polynomials of a convolutional code are g;(z) = 1, g2(z) = 1 + z.
What are its rate and constraint length? Sketch the encoder scheme, draw the
trellis diagram and find the free distance of the code.

The generator polynomials of a convolutional code are gi(z) =1 +z+ 22,
22(2) = 1 + z+ 2%, g3(z) = 1 + z2. What are its rate and constraint length? Sketch
the encoder scheme, draw the trellis diagram and find the free distance of the code.
One of two generator polynomials of the convolutional code is g(z) = 1 + z + 22
Which of the polynomials g>(z) = 1, g2(z) = 1 + z or g2(z) = 1 + z? is better as the
second generator polynomial to maximize the asymptotic coding gain? What is
this maximal gain? What sort of implication follows from this problem about
comparison of systematic and non-systematic codes?

Generator polynomials of the convolutional code are gi(z)=1+z+ 22,
22(2) = 1 4 2*. Encode the bit stream 110110110110110... and explain why this
code enters the class of so-called catastrophic codes, which are not recommended
for practical use.

Decode as many data bits as possible if the observation is 100101100011000 and
the generator polynomials of the convolutional code are gi(z) =1, g2(z) =1+ z
and g3(z) =1+ z.

Decode the observation 111111100000001111, if generator polynomials of the
convolutional code are as in Problem 9.14 and it is known that after encoding
four data bits the encoder is forced to a zero state by tail bits. How far is the
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9.19.

9.20.

9.21.

decoded word from the observation? If the decoding result is true, how many
errors did the decoder correct?

Revise the decoding procedure of Example 9.3.4, storing all paths entering a node
with equal metrics as survivors. Continue after the seventh step up to the first step
where decoded data bits may be released. At what step does it occur? How many
bits are released?

The bit stream is encoded by a binary convolutional code with generator poly-
nomials g(z) = 1,g2(z) = 1 +z. Binary symbols are transmitted by BPSK
(0 — 41,1 — —1). The communication channel is Gaussian and output observa-
tion samples are y=(-0.5-0.5-3,—-4,-6,2,—4,5,3,-2). Decode
this observation using the hard and soft (based on correlation of the observation
with trellis diagram paths) Viterbi algorithm. Assume that the last two
code symbols correspond to a tail bit setting the encoder to zero. Explain the
difference (if any) of the results of the two procedures. Which of them is more
trustworthy?

Someone wants to build a turbo code starting with the convolutional code
described by the generator polynomials gi(z) =1+z>+z* and g(2) =
1 +z + 2% + z*. Sketch a component encoder of the turbo code.

Matlab-based problems

9.22.

9.23.

9.24.

9.25.

Write and run a program to calculate sum, product, quotient and remainder for
two arbitrary binary polynomials.

Write a program that finds a generator polynomial for binary CRC of given
length detecting up to three errors.

Write a program illustrating error detecting by CRC. Recommended steps:

(a) Using the program of Problem 9.23, find an appropriate generator polyno-
mial g(z) for CRC of a given length » detecting up to three errors.

(b) Take any binary error vector of length n and weight 1, 2 or 3 and divide it by
the generator polynomial; make sure that for any such vector but zero the
syndrome is non-zero.

(c) Take any decimal number smaller than 2", where r = deg g(z), and convert
it into a binary vector (the function ‘de2bi’ is a good aid for this); multiply the
corresponding polynomial by the generator polynomial.

(d) Using the polynomial of the previous item as the error one, check that this
error pattern coinciding with some codeword cannot be detected.

(¢) Run the program 1000-10000 times for CRC of length n = 40—200 with
independent random error vectors and calculate syndromes. How often do
undetected errors happen? Compare the result with the theoretical prediction.

Write a program running convolutional encoding, given the set of generator
polynomials. In Matlab, as is customary, generator polynomials are given in an
octal notation. The binary vector of length v, of polynomial coefficients in a
power-ascending order is appended if necessary by left zeros to make the length
a multiple of three. Then every binary triple is put as an octal figure, the rightmost
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9.26.

9.27.

bit being the least significant, and the set of n polynomials in octal notation is
presented as an n-tuple. For instance polynomials g;(z)=1+z and
22(2) = 1 4+ z + 22 have octal notation (6,7). Run the program for codes with
polynomials (7,5), (15,17), (53,75), (561,753), (5,7,7), (25,33,37) and
(133,145,175) trying to get a non-zero codeword of minimum weight. What is
the trend in the behaviour of free distance versus constraint length and rate?
Develop the program of Problem 9.25 to find the free distance of a convolutional
code. Run the program for codes with polynomials (7,5), (15,17), (23,35), (53,75),
(133,171), (247,371), (561,753), (1167,1545), (5,7,7), (13,15,17), (25,33,37),
(47,53,75), (133,145,175), (225,331,367), (557,663,711) and (1117,1365,1633).
Using operators of the Matlab Communication Toolbox, write a program for
convolutional hard-decision decoding. Assuming that the transmitted message is
10y, zeros, run the program for the code with generator polynomials (23,35). Enter
the error vectors of weight 2-3 and make sure that errors are corrected whenever the
parameter ‘tblen’ is around (4—5)v,.. Try to find the error of weight 4 which is not
corrected, and explain why it may not be easy despite the free distance of the code
being 7. Increasing the error weight, observe the decoder behaviour. Run the
program 1000 times for independent random error patterns of a given weight and
calculate bit error probability depending on error weight. Do the same for the codes
(47,53,75) and (133,145,175) (free distances 13 and 15, respectively).






10

Some advancements in spread
spectrum systems development

10.1 Multiuser reception and suppressing MAI

In Section 4.1 we met two options for making decisions on the data in a K-user CDMA
system. One of them runs the optimal (ML) procedure realized by the so-called multi-
user receiver, while the other involves a single-user or conventional procedure. The
conventional receiver treats MAI as no more than an additional random noise, fully
ignoring the deterministic nature of signatures and correlations between them. On the
other hand, multiuser algorithms utilize a priori knowledge about signature codes or, at
least, their ensemble correlation properties. In this section we are going to discuss briefly
the ideas underlying multiuser reception, starting with the simplest case of synchronous
CDMA.

10.1.1 Optimal (ML) multiuser rule for synchronous CDM A

In order to make the discussion free of secondary details let us consider the plainest, yet
general enough, model of K-user DS CDMA involving real signatures and BPSK data
transmission. The model covers, among others, any system with BPSK signature and
data modulation. As in Section 7.2, within this subsection we consider a fully synchron-
ous case when both chips and borders of data symbols (bits) of all users are strictly
aligned in time. This, along with the assumption of the independence of consecutive data
bits of any user, permits limiting the observation interval to a single bit duration:
T = Tp. Then the group signal of K users:

S(l;b) = XK:Akkak(l) (10.1)
k=1

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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where, similarly to (4.1), A4y >0 is the real amplitude of the kth user signal,
b = (by,b,...,bk) is the vector of data bits of K users (bit pattern) and si(¢) is the
kth user’s signature.

As was mentioned in Section 4.1, the globally optimal (ML) procedure involves
searching the estimate b= (bl, b2, .. bK) of the K user data bits pattern b as the value
of b minimizing the Euclidean dlstance (or its square d>(s,y)) between the observation
y(1) and group signal (10.1). Calculating d’(s,y) in the same way as in (4.3) results in:

T K K
/ —s(t; )7 dr = |ly]| —ZZAkbkzk+ZZAkA1bkblpk1 (10.2)
0

k=1 k=1 I=1

where

= / p(1)se (1) dt (10.3)
0

is, as usual, correlation of the observation y(¢) with the kth signature, py, is the correl-
ation coefficient of the kth and /th signatures, and the presence of amplitudes A allows
use of a convenient normalization of signatures:
T
e = lIsilP= /s,i(x)dz: L k=1,2,...K
0

Let us introduce two matrices: G = diag(A4;, 4», ..., Ak), a diagonal K x K matrix of
users’ amplitudes, and C = [py], k, [ = 1,2, ..., K, the correlation matrix of signatures.
With designation z = (zy, z2, . .., zg) for the vector of correlations (10.3), the squared

distance (10.2) becomes (superscript 7 symbolizing vector—matrix transpose):
d*(s,y) = |ly||*—2bGz” +bGCGb” (10.4)

The first term in the right-hand side of (10.4) is fixed with a current observation y(7) and
consequently the ML estimate b may be found as the value of b maximizing the
difference of two other terms:

%Gz — HGCGhH' = max(2bGz" — bGCGH) (10.5)

When a CDMA system is not oversaturated (K < N; see Section 7.2), all signatures are
allowed to be orthogonal, so that p;; = 6;; and C = Ik, where Ik is the Kth order identity
matrix. Then bGCGb” = 7% | 42 does not depend on the user’s bit pattern b. As was
noted in Section 4.1, multiuser detecting then degenerates into a conventional one, where
the sign of the correlation z; defines the estimate l;k of the kth user’s bit ;. In the case of
non-orthogonal signatures (e.g. oversaturated CDMA, K > N) the conventional recei-
ver yields to the ML one, but the latter may appear prohibitively complex. Indeed, the
data vector b is strictly restrained by the BPSK alphabet limitation by = +1, and no
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procedure exists that is more computationally efficient than just trying all 2% possible bit
patterns and comparing the results of their substitution to the right-hand side of (10.5).
Therefore, ML multiuser detection according to (10.5) has exponential complexity
versus the number of users (see numerical example in Section 4.1). On the other hand,
the motivation to involve multiuser detection is often strongest when the number of users
is so great that conventional detection fails due to the high level of MAI. This explains
the interest in various quasi-optimal multiuser algorithms, some of which are surveyed in
the rest of the section.

10.1.2 Decorrelating algorithm

Let us start with a conventional (i.e. correlation-based) receiver of user number one’s
data. According to (10.1) the observation:

K
(t) = s(t; b) +n(1) = Axbisi(t) +n(1) (10.6)
k=1
This, after substitution to (10.3), where k = 1, leads to:

K
z1 = A1by + zAkkakl +n (10.7)
k=2

where n; = fOT n(t)s1(t)dt is a noise sample at the first correlator output. The second
term of (10.7) is MAI, and the question is whether it may be suppressed to zero by
means of some linear transform of the input observation. Whatever this linear operation
is, finally we should have some MAI-free substitute ¢ of zy, i.e. the scalar, producing the
decision on the first user’s current bit as:

by = sign() (10.8)

Any linear operation transforming y(¢) into a scalar may be described as correlation:
T
a= / Y(1)u(e) de (10.9)
0

differing from (10.3) by only a reference signal u(¢). Therefore, we are going to suppress
MAI declining matched reference s;(¢) in favour of mismatched one u(?), i.e. at the cost
of loss in SNR with respect to a thermal noise. We have already resorted to this trick
when seeking zero-forcing filters to remove autocorrelation sidelobes (see Section 6.12).
Using (10.6) in (10.9) replaces (10.7) by:

K
a1 = Aibipi+ Y Axbipiu+ 1y (10.10)
k=2
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where py, 1s the correlation coefficient of the kth 51gnature with u(#), normalization
of reference u(z) is the same as for signatures, and #} = fo n(t)u(t)dt is a noise contri-
bution in g.

Let us put signatures and a reference signal u(¢) in the form (2.50) typical of DS
CDMA with real-valued signatures:

Zak,so (t—iA), Zu,vo (t—iA) (10.11)
where u;,i = 0,1,..., N — 1 is a real code sequence of the reference u(f). Using the vector
notation of code sequences ay = (ax.0, dk.1,---» k. N—1), U = (Up, U1, ..., un_1) (see Sec-

tion 7.2) and setting with no lost of generality chip energy £y = 1, we come to equations
pr1 = (ak,a)) = agal, pr, = (ag, u) = agu’. To remove the MAI term in (10.10) indepen-
dently of amplitudes and bits of interfering users we need to fulfil K — 1 conditions:
Pkw = 0,k > 2. In other words, the reference code u should be a solution of the linear
equation set aju’ = ua[ =0, k =2,3,... K. Preserving the non-zero useful effect p;, has
to be non-zero, hence u is just a properly scaled solution v of the equation:

VA =¢ (10.12)

where columns of the N x K signature matrix A are signature code vectors:
A= (al,al, ... al) and e, is a K-dimensional vector of the view e; = (1,0,0,...,0).
When all signature vectors are linearly independent, the system (10.12) may have a set of
solutions, but among all vectors v satisfying (10.12) we choose the one that is a linear
combination of signatures, i.e. rows of A”: v = xA”, where x is an unknown K-dimensional
row vector. The reason for such a choice is that inclusion in v of any component
orthogonal to the space of the signature vectors will only increase the norm of v, i.e.
the noise component at the correlator output, with no increase of the useful first term in
(10.10). With this substitution (10.12) becomes:

xATA = xC = ¢

Linear independence of signatures (columns of A) means rank K of the correlation
K x K matrix C = ATA, i.e. its invertibility and uniqueness of solution of the equation
above: x = e;C~!. Then:

v=xAT =, C AT =¢;(ATA)'AT (10.13)

is a desired solution of (10.12), whose scaling u = v/||v|| results in the normalized
decorrelation reference u, so that ualT = p1,. This normalization is practically unneces-
sary, having no effect on the sign of ¢; in the decision rule (10.8).

Physically the reference vector (10.13) is just orthogonal to all signatures but the first,
entirely eliminating MAI at the output of a correlator tuned to the first user’s signal. We
would find the reference signal for the kth user’s receiver in the same way, replacing e in
(10.13) by ex, whose unique non-zero component is the kth one.

The main drawback of the described decorrelating receiver is its working capacity with
only linearly independent signatures. If this demand is not observed, any attempt to
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force MALI to zero will inevitably make a useful effect (the first term) in (10.10) vanish
too. At the same time, linear independence means that K < N, in which case the most
adequate choice of signatures is an orthogonal set (see previous subsection) entailing
optimality of a single-user receiver and automatically rejecting MAI with no SNR loss
and no special decorrelation processing. In the case of oversaturation (K > N) linear
independence of signatures is impossible and the decorrelating algorithm cannot be used.

10.1.3 Minimum mean-square error detection

Let us again exploit the idea of mismatched processing in a correlator tuned to the
first user’s signal, but this time, instead of forcing MAI to zero, we will try to minimize
the overall corrupting effect of MAI and noise. Coming back to (10.7), we may note
that only the term A4;b; in it is a useful component, the other two presenting an overall
interference (MAI plus noise). In this light it is natural to look for a linear operation
(10.9), imitating a useful contribution with minimum mean-square error (MMSE).
To formalize the problem we first rewrite (10.9) in a vector form, substituting wu(¢)
from (10.11):

N—1
= uyi = u§” (10.14)
i=0

where § = (o, y1,-..,yx-1) and y; = [ y(0)so(t — iA)dt,i =0,1,...,N — 1. Techni-
cally y; may be obtained as a sample at the output of a chip matched filter taken at
the appropriate moment (see (2.68)), allowing to look at y as a vector of observations
after the chip matched filtering. Our task now is to minimize mean square deviation &2
of ¢; from A;b; by an appropriate choice of a reference code vector u:

) ~T12 .
52 = |A1b1 — §1|2 = ’Albl — llyT’ = muln

Note that no a priori normalization of the reference u is necessary. After squaring and
term-wise averaging, the mean-square error takes the form:

2 = (A1b1)> = 241057 by + (u§")? = (A1b1)? — 241057 by + uy’ ju” (10.15)

where we use elementary matrix algebra (commutativity of multiplication by a scalar
and associativity of vector—matrix multiplication, commutativity of a scalar product
uj’ = ju”) and non-randomness of u. The ith component of § after substitution of
(10.6) and then (10.11) becomes:

T T
Vi = /y(t)so (t—iA)d / [Z Apbisi(t) + n(r)
0

so(t — iA) dt

k=1

0
« T
= ZAkbk ak,/so t—jA)so(t —iA)dt +v; = ZAkb/‘ak, + y; (10.16)
0
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where v; = fOT n(t)so(t — iA)dt is the ith noise sample at the chip matched filter output
and a natural assumption is used that the chips time-spaced by a non-zero integer number
of repetition periods A are orthogonal (e.g. if chip duration is no longer than A, those
chips do not overlap). Now we see that y;b; = 4,4, ;, because bits of different users are
independent of each other (b;b; = &) and of noise (v;by = 7; - by = 0), and hence:

A5 by = Ajal (10.17)

In a similar manner we calculate the matrix ﬂ, whose elements are simply correlation
moments y;y; of samples y;. Then, according to (10.16) and allowing for non-correlatedness
of noise samples after the chip matched filter:

K K
T —_ P P
Vi = E E A Aibibiag iar; + viv; = E Aiagiarj + 076
=1 =i =1

o being the variance of a noise component of y;. Thus, the N x N correlation matrix R
of the observation vector ¥ is:

R=7§"y =[] = AG’A” + o’y (10.18)

where Iy is the Nth order identity matrix. Substituting (10.17) in (10.15) after discarding the
first term independent of u gives the following scalar function to minimize by adjusting u:

f(u) =uRu” —243au” (10.19)

At the point u of extremum of f(u) the gradient of f'(u), i.e. vector, whose components are
derivatives of f(u) with respect to every component of the vector u, should be a zero vector.
The gradient of f(u) is readily found (see Problem 10.3) as 2(uR — 42a;). Thus, with
invertible matrix R the vector u delivering an extremum to f(u) is defined by the equation:

u=AlaR"! (10.20)

where R is given by (10.18). The reader is challenged to check that the extremum just
found is really a minimum of (10.19) (Problem 10.3).

Clearly, this algorithm does not rest on the invertibility of the signature correlation
matrix C = ATA; just the observation correlation matrix (10.18) should be invertible,
which is practically always true. Hence, the solution (10.20), in contrast to (10.13), is
universal regardless of the relation between K and N. At the same time, at least in one
important particular case the solution (10.20) degenerates to the single-user algorithm.
Let the signature set be a Welch-bound one, meaning that the rows of the signature
matrix A are orthogonal (see Section 7.2.2), i.e. AAT = Iy. If all signals have the same
intensity A4, G*> = A2Ix, and the observation correlation matrix (10.18) becomes the
simplest, R = (4% + 0%l y, resulting in u = [4%/(A4% + o?)]a;, which reproduces a scaled
first signature, i.e. the reference of a conventional receiver. Thus, no special MMSE
processing exists for the Welch-bound signatures of equal power. This fact is rather
trivial if K < N, since then such signatures are orthogonal and a conventional receiver
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eliminates MAI fully with best noise filtering, but for the oversaturation scenario
(K > N) the statement is not that predictable.

In the literature the result (10.20) is often given in another form including explicitly
the signature correlation matrix C = AT A [99-101]. Deriving it is possible, for instance,
through the matrix inversion lemma given here in the form fitted to the context:

1 1
R = (AG°AT +Iy) ' = S Iy — S AATA + 057G %) AT (10.21)
a g
Proof of this result consists in a direct check (Problem 10.4). Note that it works whenever
the matrix G is invertible, which is observed automatically if all users” amplitudes are non-

zero. Making use of (10.21) and equation A3a; = e;G?AT in (10.20) results in:
1
u=e AR = —e/G [AT _ATA(ATA + azG‘z)’lAT}
o
1
= e G |AT — (ATA+0°G?)(ATA + UZG’Z)_IAT} +e(ATA+0°G ) 'AT

o2

and eventually:
u=-¢ (C+0°G 2 AT (10.22)

Returning back to (10.14), we write the final form of the decision rule on the first user’s
bit as:

by = sign(q;) = signfe; (C + c*G2) 'AT§] (10.23)

Spreading this rule to the receiver of the kth user’s data is again immediate: e; has to
replace e;.

Emphasizing again that the rule under study is universal independently of signature
correlation matrix invertibility, it is nevertheless noteworthy that if C is non-singular
(K < N is anecessary condition of it) and thermal noise diminishes, the MMSE detector
converges asymptotically to the decorrelating one:

u=-¢(C+0°G 2 'AT 2—>061C’1AT.

To demonstrate the efficiency of MMSE it is appropriate to compare the signal-
to-interference-plus-noise ratio (SINR) for the receiver effect ¢; in cases of reference
(10.22) and that of a conventional receiver u = a;. The contribution of the kth signal in
g1 as seen from (10.14) is Aual, so that the useful power (created by the first useful
signal) is A%(ualT)2 and MAI power is Z,Ifzz Ai(uakr)2 . Uncorrelatedness of noise samples
v; after a chip matched filter means that their powers are added after weighting by u; in
(10.14), so that the total power of the noise component of ¢ is 02 SN, 12 = o2|ul)*.
Combining these results produces SINR:

ao A ghfed)’
1

= = (10.24)
2 (T2 2012 5 T\2 2
%A/c(“ak) +0?||ull kzzqkb(uak) + ||

where ¢7, = A7 /o is power SNR per data bit for the kth user.
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Example 10.1.1. Consider an oversaturated synchronous CDMA with Welch-bound
signatures. Binary Welch-bound ensembles exist for any K > N allowing the existence of a
K x K Hadamard matrix. The signatures then are just K columns of this matrix after
discarding any K — N rows. In the light of the aforesaid, the case of equal powers will not
display any advantages of MMSE against conventional detection. For the values
K =64,N =48 a random pattern of users’ amplitudes was taken as 64 samples of
Rayleigh variable to imitate the Rayleigh channel. Figure 10.1 presents the dependence of
SINR (10.24) for MMSE and conventional detectors on bit SNR under some ‘benign’ (well-
scattered) amplitude pattern. The curves show that the gain of MMSE sometimes appears
significant (in Figure 10.1 up to about 10dB). Sitill, it should be remembered that such a profit
is just a matter of chance: for some amplitude patterns it may appear even bigger, but the
more uniform the amplitude pattern, the smaller is the difference in SINR versus the
conventional receiver. One more remark is that the MMSE detector has much better
resistance to the scatter of users’ intensities (if signatures are non-orthogonal, of course) in
comparison with the conventional receiver, making it especially attractive wherever the power
control is not perfect.

10

SINR (dB)
W

(=]

-5

Ist user bit SNR (dB)

Figure 10.1 Example SINR curves for MMSE and single-user receivers

10.1.4 Blind MMSE detector

Although the computational complexity of the MMSE algorithm (as well as the decor-
relating one) is not at all practically prohibitive there is still one implementation issue
motivating further research. As (10.20) shows, the key operation of the MMSE
algorithm is inversion of the observation correlation matrix R defined by (10.18). To
perform it the receiver of the kth user should know, along with its own signature, also
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the signatures of all the other users. In some situations such a requirement looks fairly
excessive. One of the most typical involvements of synchronous CDMA is the downlink
of mobile radio, and making every mobile know all the signatures currently utilized by
the other users would complicate the system dramatically. Fortunately, the correlation
matrix of the observed process may be estimated experimentally from the observation
itself, provided the observation period is long enough. This is the core idea of blind
multiuser algorithms. Suppose that §; is an N-dimensional row vector of samples at
the chip matched filter output corresponding to the data bit number i =0,1,....
Then estimate R; of the observation correlation matrix may be found as:

R 1< i1 1 i 1
Ri: Ty = - — Ty ~.T~.:—Rl»7 —~.T~.
i+1;y[y, o i;y,yﬂriﬂy,y, R
Therefore, it is possible to compute ﬁ[ in a recurrent way: as soon as the portion of

observation samples spanning the new bit arrives, it is used to update the estimate R;.
After this the result is substituted in (10.20) to find the current reference as

1
u; = A2aR; , calculating from (10.14) ¢, = ui)'f,-T , and the decision on the ith bit accord-
ing to (10.23). Variations and advancements of blind multiuser algorithms are plentiful
and may be found in the literature (see [19,100,101] and their bibliographies).

10.1.5 Interference cancellation

One can construe the low-complexity of both decorrelating and MMSE detectors by
the fact that they exploit a single-user philosophy, i.e. a linear operation of multiplying
the observation vector ¥ by a mismatched reference vector u. The interference cancella-
tion strategy is again based on a conventional receiver, supplemented by a loop of
subtraction of MAI terms from the output effect (10.7). Suppose that the first user
receiver knows the signatures and amplitudes of all users and one way or another has
obtained estimates 132,153, . ..,BK of data bits of the side users. Then one is capable
of regenerating all side user signals, subtracting their sum from the observation y(f)
and utilizing the result as an input (presumably free of MAI) to the conventional
receiver. Certainly, the efficiency of such a detector will dramatically depend on the
reliability of knowledge of side signal amplitudes and the accuracy of estimates of side
user bits. Among others, the multistage procedure is widely discussed in the literature
[19,102]. Its first stage involves successive estimates of user bits transferring from
the stronger to weaker signals, and using the already estimated k — 1 user bits to
remove corresponding MAI terms when estimating the kth user’s bit. After all K bits
are estimated by so doing the procedure runs the next stage, where all the same
operations are repeated. This time, however, the receiver’s knowledge on MAI is richer
compared to the previous stage, and subtraction of the recreated MALI starts from the
very beginning, i.e. estimating a bit of the strongest user. Stages like this are iterated as
many times as is wished, each starting with an updated MALI recreation and continuing
to refine it during the course of user bit pattern estimation. When one or another
terminating criterion is met, the procedure outputs the final estimate of the bit of the
user of interest.
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10.1.6 Asynchronous multiuser detectors

Although the multiuser detection algorithms briefly discussed above are tailored to
synchronous CDMA, they are, after an appropriate modification, extendable to the
asynchronous case, too. Let us come back to (10.6) and adapt it to the asynchronous
situation illustrated by Figure 7.15, assuming alignment of chip boundaries of all users
and operating with only baseband real signatures (i.e. ignoring mutual phase shifts of
bandpass signatures). Assume also that all signatures are periodic with period equal to
bit duration T = T, and consider as before the first user receiver (77 = 0) at the
observation interval of data bit number zero. Then:

K
Albl,OSl(t) + ZAkbk,flSk([ — Tk) + l’l([), O0<tr<n
y(1) = e (10.25)
A]bl,osl(l) + ZAkbk,Osk(t — T/c) + n(l),ﬁ <t<T
k=2
As (10.25) shows, the character of MAI created by the kth user depends now on whether the
kth user’s data bit changes or not during the observation interval, the kth signature altering
its polarity at the moment ¢ = 73 in the second case. Suppose that the first user receiver
knows the timings 7, of all users. In this case the number of potentially harmful MAI
vectors created by K — 1 side users is 2(K — 1), unlike the synchronous case, where a similar
number was only K — 1. Together with the first signature vector we have 2K — 1 vectors in
total. If they are all linearly independent, a modified version of the decorrelating algorithm
(10.13) may be used to eliminate MAI entirely regardless of the bits transmitted by users.
Clearly, within the dimension (spreading factor) N, the maximal number of users K allowing
such a processing is limited to 2K — 1 < N, i.e. cannot be greater than [ N/2]. The necessary
alteration of (10.13) is replacement of the ‘pure’ N x K signature matrix A by an extended
N X (2K — 1) one, whose columns are the first signature, K — 1 properly time-shifted other
signatures and the latter with polarity hops, starting at chip number zero (see Figure 7.15).

The MMSE detector interprets MAI statistically, i.e. as a random process described
by its correlation matrix. The same interpretation is, certainly, applicable to the asyn-
chronous case and again some revision is necessary to allow for changing the observa-
tion correlation matrix [19].

Since in an asynchronous system every side user bit may cover two consecutive bits of
the user of interest, MAI correlation extends beyond the duration of one bit. That is the
reason why the performance of asynchronous multiuser detectors typically improves
when the observation interval spans several data bits.

We cannot go deeper into discussing multiuser detecting due to space limitations. This
area is among the most challenging and rapidly advancing currently, and readers eager to get
better insight into its current state as well as to learn about the prospects of its application in
3G and beyond are recommended to consult [19,100,102-104] and their references.

10.2 Multicarrier modulation and OFDM

In recent years the transmission mode called multicarrier (MC) modulation has gained
great popularity in telecommunications. In general terms, MC modulation means no
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more than involving a multitude of parallel subcarriers to transmit symbols of the same
datastream. The specific form of utilizing the subcarriers may vary depending on the goal
pursued. In our context the issue of primary interest is the relation of MC modulation with
the spread spectrum concept. It follows from the previous contents that all advantages
inherent to spread spectrum have their origin in a high time—frequency product (processing
gain, spreading factor) WT. Various ways exist to widen the signal spectrum, given the
duration given. DS spread spectrum solves this task, replacing conventional ‘slow’ symbol
pulses by ‘fast’ signals of some convenient shape, i.e. controlling signal bandwidth via the
time domain. MC modulation from this angle may be referred to as an alternative method
of spreading the spectrum through its direct shaping in the frequency domain.

10.2.1 Multicarrier DS CDMA

The simplest version of incorporating the MC technique into CDMA is an ordinary
frequency multiplexing of data of the same user. To realize it M. subcarriers transmit
demultiplexed and DS spread data with non-overlapping spectra of subcarrier signals.
Figure 10.2 explains this transmission mode, which is called multicarrier DS CDMA

Source (fast) bit stream DS signature
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Figure 10.2 Explanation of MC-DS-CDMA
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(MC-DS-CDMA). The source ‘fast’ bit stream of rate R = 1/T} is demultiplexed (split)
into M, parallel ‘slow’ bit streams of rate R/ M. (or bit duration T}, = M_.T}) each. The ith
slow bit stream is transmitted on its specific subcarrier of frequency f;,i =1,2,..., M,
using DS spreading and some data modulation mode (BPSK, QPSK or other mode). With
spreading chip duration A" and subcarrier data symbol duration 7"’/ the bandwidth and
spreading factor of one subcarrier signal are found as W’ ~ 1/A" and N' =T ;/A’ =
w'rT ;,, respectively. Spacing F of the subcarrier frequencies should exclude spectra over-
lapping, i.e. meet the restriction F = W’ + F,, where F, is a guard interval allowing for
out-of-band spectra sidelobes. Therefore the total bandwidth occupied by the system:

W=(M.—1)F+W =MW + (M. - 1)F,. (10.26)

The receiver of MC-DS-CDMA consists of M, parallel identical receivers, each tuned on its
own subcarrier and processing it independently of the others. Demodulated slow bit streams
from their outputs are then multiplexed to restore the transmitted source fast bit stream.
Comparison of this system with DS CDMA of the same total bandwidth W and data
rate R shows that due to the necessity for guard intervals MC-DS-CDMA yields to
DS-CDMA in spreading factor. If both systems use the same modulation mode then
symbol duration 7T, for DS CDMA should be M, times shorter than the MC-DS-CDMA
symbol duration T 1’1, but chip duration in DS CDMA may be taken as A =~ 1/W providing
the spreading factor N = T,/A =~ WT ;,/MC. In accordance with (10.26) the ratio of this
entity to the spreading factor of MC-DS-CDMA:
E:1+Mc—l‘§:1+ (M. — 1)F,
N M. W W—(M.—1)F,

(10.27)

may remarkably exceed one. Since the spreading factor is the most important par-
ameter of CDMA, determining user capacity, jamming immunity etc., MC-DS-CDMA
proves to be not the best potential option for utilization of the available spectral
resource. Sometimes, however, other factors may prevail, as takes place in the specifi-
cation of cdma2000, which recommends MC-DS-CDMA for arranging a downlink on
the grounds of backward compatibility with cdmaOne. In this case the single-carrier
format of cdmaOne (slightly modified) is just replicated on three appropriately spaced
carriers.

10.2.2 Conventional MC transmission and OFDM

Let us digress for a while from spread spectrum and CDMA to get a better under-
standing of the reasons underlying the considerable interest in the MC technique in
modern wireless telecommunication. Suppose one wants to transmit a source bit stream
using some conventional (non-spread-spectrum) modulation mode (BPSK, QPSK etc.).
With M-ary modulation and necessary data transmission rate R, the duration of the
data symbol pulse is 7, = (log, M)/R. Suppose that the channel coherence bandwidth
B, (see Section 3.6) is significantly narrower than the bandwidth of data symbols
(B. < W =1/T, = R/log, M), or, putting it differently, the delay spread 74 exceeds
symbol duration remarkably. Then under the ‘direct’ transmission (see Figure 10.3a),
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Figure 10.3 Single-carrier (a) and MC (b) data transmission

a deep ISI (see Section 3.5.4) will be present, distorting the data symbols following the
current one. To counter it the receiver will have to involve a rather complex equalizer
with a long memory, typically realized as an adaptive FIR filter, i.e. tapped delay-line
with adjustable tap weights.

MC transmission offers an alternative solution (Figure 10.3b) avoiding the need for
complex equalizing. Let us again demultiplex the ‘fast’ source bit stream of rate R to
M. > W/B. parallel ‘slow’ bit streams having rate R/M . each. Certainly, the overall rate
provided by all slow bit streams is equal to the original one, i.e. R. Now let us take M,
subcarriers f1, f2, . . ., fu. spaced uniformly with interval F = W’ = W/M, and use each
of them to transmit one of M, slow bit streams in the same modulation mode as before.
Every individual subcarrier forms a separate subchannel operating regardless of the
others and transmitting a slow bit stream by longer pulses (symbols) of duration
TI’, = M_.T),, ie. occupying M. times narrower bandwidth W’ = W/M, than before.
This means that within a subchannel the fading is no longer frequency-selective, since
W'= W|M, < B.. For a flat fading the delay spread does not go far beyond a single
pulse, and ISI is less dramatic than it was initially and may be countered by compara-
tively simple equalizers. The total bandwidth occupied by the MC system is around
W~ MC/TI’7 =1/T, = R/log, M, i.e. equalling that of the single-carrier transmission.
In fact, spectral efficiency of the MC system appears to be even better, since the shape of
its real spectrum is closer to a rectangle.
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We do not use any frequency guard intervals now, and, moreover, allow subchannel
spectra to overlap, since a traditional estimate of subchannel bandwidth W’ =~ 1/T ;
usually leaves remarkable out-of-band spectrum sidelobes. Nevertheless, the mutual
interference between subchannels may be entirely suppressed. Suppose that the symbol
pulse is rectangular and by agreement its bandwidth is measured as W’ =1/T ;,.
Then frequency spacing between adjacent subcarriers F = W' = 1/T |, guarantees the
orthogonality of subchannel signals, i.e. complete elimination of mutual interference
between the MC subchannels. That is why this version of the MC modulation technique
bears the name orthogonal frequency division multiplexing (OFDM).

Let the modulation symbols (complex amplitudes) of M. subcarriers of OFDM be
bi=A;exp(joi),i=1,2,..., M., where 4; and ¢; are real amplitude and phase, respect-
ively, and symbols are transmitted by rectangular pulses. Then the resulting signal in
complex notation, which is physically a complex envelope to be up-converted further to
some central carrier fp, is:

M. M,
‘ 2m( 1
=3 brexp(j2nf) Z l”)[
i=1 P

(10.28)

where f] is set equal to zero, and therefore f; = (i — 1)F = (i — 1)/T;). The latter assump-
tion leads to no loss of generality, since the eventual value of the central frequency is
afterwards set up by an up-conversion. Signal (10.28) is OFDM symbol, the number of
different OFDM symbols (OFDM alphabet size MorpMm) being determined by the size
of the alphabet of modulation symbols M and the number of frequencies:
Morpm = MM:. For the example of BPSK OFDM Moppy = 2M-.

Sampling (10.28) with interval 7, = T ;,/ME produces the sequence:

. (i — 1)1
S = ST} /M.) Zb {f” )} 1=0,1,...,M,— 1 (10.29)

replicating (except for an immaterial constant coefficient) the inverse discrete Fourier
transform (IDFT) of the sequence of modulation symbols {b;}. This uncovers the key
reason for the popularity of OFDM: to implement this MC mode there is no need to
modulate parallel generators of M. subcarriers and sum the results. The same output
effect is obtained with the aid of IDFT of modulation symbols. Thus, the typical
structure of an OFDM transmitter (Figure 10.4) includes demultiplexer, and an IDFT
unit outputting the IDFT vector (10.29), which is then converted from parallel to serial
form of sequential samples and interpolated to produce a continuous OFDM symbol

Slow streams OFDM

symbol

——>| IDFT =) Pagz]rlizll e Interpolator ———

Fast stream
B —

Demultiplexer

Figure 10.4 Generation of OFDM symbol
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(10.28). This latter (after introducing a prefix; see below) is up-converted and transmitted
on the desired central frequency f.

At the receiving end there is also no need to use M, parallel receivers each tuned to its
individual subcarrier, since one may extract {b;} from (10.29) by the direct discrete
Fourier transform (DDFT):

(i — 1
ZS;ex [ / ”(M )l} Mb, i=1,2,..., M, (10.30)

This shows that a DDFT unit is an appropriate device to split a received OFDM symbol
into M. subchannel effects necessary to retrieve transmitted data. Still, at the real
channel output the receiver does not have at its disposal a ‘pure’ OFDM symbol.
Instead it observes a complex envelope Y(7), containing an OFDM symbol distorted
by noise and ISI. As follows from its principle, the MC technique, increasing symbol
duration limits the depth of ISI propagation to the symbol following the current one.
To exclude this residual ISI, too, one may insert a guard interval of duration T, > 74
between adjacent MC symbols. This interval should not compulsorily be empty.
Moreover, filling it with a cyclic prefix of the OFDM symbol remarkably facilitates
neutralization of the channel multipath effects. Appending a cyclic prefix serves to
convert a convolution of the transmitted signal with the channel pulse response into
the cyclic one, corresponding to the product of DFT images. Denote v = |74/7;| an
integer number of sampling intervals in maximal channel delay and append v last
samples of (10.29) as a prefix to the transmitted OFDM symbol. The receiver will drop
the first v samples of S, l=-v,—v+1,...,M,— 1, so that multipath replicas of the
previous OFDM symbol will not affect M, samples left. The delayed replicas of
the current symbol itself will be influential, however, on the latter samples due to the
channel multipath propagation. If the channel pulse response samples are
Hy, H,, ..., H,, then each observation sample Y, / =0, 1,..., M, — 1 (noise neglected)
is found as the convolution:

Y,:ZSl_mHm,l:O,1,...,Mc—1 (10.31)

m=0
Due to the cyclic prefix the sequence S l=0,1,.... M, —1isa cyclic shift of the
sequence S, for any m =0,1,...,v, therefore (10.31) is a cyclic convolution, and its

DFT spectrum is a product of DFTs S; and H,; of sequences S, and H,. DFT of the
former is just a scaled sequence of modulation symbols {b;} (see (10.30)), while

A (i — 1
Hi:ZHlexp(_‘]ﬂ-(]l‘di)l>

=0
is the channel transfer function at the frequencies f; = f1, f2, . .., fa,, so that:
Y= MbH,i=1,2,... M, (10.32)

This result shows that to remove the channel influence on the OFDM signal, i.e. perform
equalizing, it is enough to simply divide each sample at the output of the receiver DDFT
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Figure 10.5 OFDM receiver structure

unit by the channel transfer function H; at the corresponding frequencies.' To learn
the current channel state, i.e. H;, some special training procedures are typically used.
Note also that since the guard interval creates a sort of overhead reducing the data
transmission rate, it is often reasonable to increase M., making the guard interval a small
fraction of OFDM symbol duration.

When data are transmitted with PSK and subchannel signals are processed separately,
i.e. the ith component of DDFT (10.32) is used independently of the others to demodu-
late the modulation symbol b;, the equalization above may be simplified to just com-
pensation of the channel phase shift, since subcarrier amplitude is redundant for
a decision. If joined subchannel processing is necessary, however, e.g. in the case of
MC-based CDMA considered below, the amplitudes of H; are of serious importance,
and the ultimate equalizing may appear preferable.

Summarizing, we may present the OFDM receiver structure in the form of Figure 10.5.
The sampler provides samples Y, from which the prefix ones are then discarded. The
sample sequence is then transformed into a parallel form. The DDFT unit outputs DFT
spectral components Y, which are data symbols b; distorted by noise and channel effects.
Therefore they, after equalizing (just multiplying by an appropriate weight coefficients w;),
may serve to elaborate data symbol estimates b; in the same manner as for BPSK, QPSK,
QAM or other modulation mode.

10.2.3 Multicarrier CDM A

The MC modulation scheme is easily adaptable to the multiuser environment to provide
code division multiplexing. Unlike DS CDMA, where an appropriate signature shaping in
the time domain provides separation of user signals, in multicarrier CDMA (MC-CDMA)
signatures are formed in the frequency domain, by controlling the amplitudes and
phases of subcarriers in a user-specific manner. One way of explaining MC-CDMA is
linking DS CDMA with MC transmission. Let us refer back to Figure 10.3 and
imagine that instead of the source fast bit stream we have the kth user data symbol

! Such evening of the channel transfer function is known as zero-forcing equalizing and was mentioned earlier
in Section 6.12.
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stream spread by the kth user DS signature of length (spreading factor) N. By this we
have N DS chips of duration A per kth user data symbol of duration 7,. Let us
demultiplex this fast DS spread stream into M, = N slow streams, unfolding every
data symbol into M. = N parallel chips of long duration A’ = T, = NA. Each of these
parallel slow chip streams is further transmitted in an MC (OFDM) manner, so that
each user has his specific law of modulating subcarriers.

Let us describe the same more directly. Let b; be a current data symbol of the kth
user. Let a; = (ak,0,ax.1,---,ak n—1) be the kth user signature vector, now used in
the frequency domain. To form the MC-CDMA signal N components of vector biay
manipulate in parallel amplitudes and phases of M. = N subcarriers f1, f>, . . . , fy during
the pulse of duration 7,. Summation of all manipulated subcarriers produces the ith
MC-CDMA symbol of duration T, transmitted by the kth user. Certainly, with F = 1/T,
implementing MC-CDMA is more feasible in a typical OFDM DFT-based form, but
the direct way of generating the MC-CDMA signal shown in Figure 10.6 for the case
of real (e.g. BPSK) alphabets of data symbols and signatures is more transparent as
an illustration of the idea. Its generalization to complex alphabets is straightforward.
In the OFDM implementation the IDFT unit replaces the multi-channel structure of
Figure 10.6.

In synchronous non-oversaturated systems, like mobile radio downlink, any set of
K < N orthogonal signature vectors (Walsh functions etc.) might provide MAI-free
separation of OFDM MC-CDMA user signals, since the orthogonality of the DFT
spectra guarantees the orthogonality of OFDM symbols. Selection of signatures
in asynchronous systems (e.g. mobile radio uplinks) is not that straightforward,
although some minimax signature ensembles characteristic of asynchronous DS CDMA
(see Section 7.5) may be of interest for MC-CDMA, too [105-107]. There is one more
complication related to designing MC-CDMA signatures which is especially topical
for mobile uplinks: the real envelope of the MC-CDMA signal, in contrast to that of
DS CDMA, has significant variations, making the peak-factor perceptibly greater than

aro cos(27 fi1)

kth user datastream s — > MC symbols

agN-1 cos(2m fyt)

Figure 10.6 Generation of kth user MC-CDMA signal
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one. This issue is to be taken into consideration and, all other factors being the same, of
the many candidates the signature set providing the smallest peak-factor should be
preferred.

Figure 10.7 presents a generic (non-DFT-based) structure of the kth user’s MC-CDMA
receiver. It consists of N = M, channels, each tuned to its own frequency and realized
as a complex correlator processing the observation complex envelope Y (7). To counter
flat fading within each frequency subchannel, the complex value Z;; from the ith
correlator output is weighted by a complex coefficient w; and multiplied by the
conjugated signature symbol a; ;. The last operation is nothing but despreading in
the frequency domain. Summation of such products over all subchannels produces the
statistic Z; to be used in estimating the kth user’s current data symbol b;. Again, in a
DFT realization the DDFT unit replaces the set of correlators.

Let us briefly touch upon the issue of choosing weight coefficients w, i =1,2,..., N
In the scenario of MC-CDMA this task is somewhat more complicated than in conven-
tional MC transmission, due to the necessity of controlling MAI level. Suppose that all
user signals pass through the same channel, as is the case, e.g., for a mobile downlink.
Since subcarrier spacing F is no smaller than the channel coherence bandwidth, values
of the channel transfer function H;, i = 1,2,..., N at the subcarrier frequencies may
disperse independently in a wide range. Normalizing the channel transfer function as

N vazl
Aj. Then the powers Py, P, P, created by the useful signal, noise and the /th MAI,
respectively, at the kth user output are calculated as:
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where o2 is noise subchannel power. It is seen now that even if signatures are originally
orthonormal:

N-1
.

E aiiay ; = O

=0

the frequency selectivity over the subchannels may destroy orthogonality, amplifying
some and suppressing other subcarriers. As a result MAI emerges so that not all
P, [ # k are zeros. To preserve signature orthogonality at the receiving end indepen-
dently of the channel current state one should select w; = l/I-'I[, i=1,2,...,N,
i.e. realize zero-forcing equalizing entirely compensating for the channel effects. This,
however, is a mismatched processing whenever the channel amplitude transfer function
is non-uniform, so that the penalty for complete suppression of MAT is loss in SNR q,zwf
corresponding to zero-forcing combining:

where g7 ms 18 power SNR achieyed with the matched processing, i.e. maximal ratio
combining (Section 3.6.1) w} = H For the case of originally equal intensities of all
subcarrier components |ay ;| = 1/\/N i=1,2,...,N SNR loss v = qk_m//qquf of zero-
forcing combining versus the maximal ratio one (cf. (6.42)):

(10.33)

It is seen from (10.33) that when nonuniformity of the channel amplitude frequency
1;| are close to zero), SNR loss, i.e. the penalty for
radical elimination of MAI, may appear intolerable, and it is more reasonable to seek
for a compromise between the levels of unsuppressed MAI and noise. One of the
approaches of this sort leads to MMSE equalization, the idea of which is similar to
that discussed in the previous section applied to multiuser detection. Details of this
technique, as well as further insight into the spread spectrum MC philosophy, can be
found in [105,106] and the numerous references listed there.

In conclusion, we again stress that no hard barrier exists between DS and MC
CDMA. They are just parallel technical ways of getting the same result: the spread
spectrum signature. The latter may always be synthesized either as a superposition of
harmonics in the frequency domain (MC) or by direct shaping in the time domain (DS).

10.2.4 Applications

The penetration of the MC technique into digital telecommunication is presently very
wide. Among examples of its practical application are the standards of digital audio and
video broadcasting DAB, DVB-T etc. The positive experience accumulated to date
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promises a remarkable attractiveness of MC-based versions of CDMA. In particular,
MC-CDMA is currently considered as one of the most plausible platforms for 4G air
interfaces.

10.3 Transmit diversity and space—time coding in CDMA systems

10.3.1 Transmit diversity and the space—time coding problem

From the brief discussion of Section 3.6, we see that involving multiple receive and
transmit antennas is a resourceful way of arranging the diversity branches necessary to
oppose the destructive fading effects. Typically antenna arrays are employed for this
purpose, consisting of elements spaced by several wavelengths to secure independence
of their multipath patterns. The term multiple input multiple output (MIMO) serves to
define the system jointly processing signals captured by several receive antennas from
several transmitting antennas. Figure 10.8 gives a general description of a MIMO channel
containing ny receive and ng transmit antennas. The ith transmit and jth receive antennas
form a subchannel, whose current state is characterized by a complex fading coefficient
Hij’ i=12,...,np,j=1,2,...,ng, which in the general case may be both time and
frequency dependent. Usually, thanks to a special piloting, the receiver knows the channel
state and is able to use coefficients H i for an efficient joint processing (i.e. combining) of
subchannel signals. As for the transmitter, it may be aware of the channel state and
capable of adjusting the signal to current propagation conditions only if a reliable data
feedback ‘receiver—transmitter’ is organized (closed loop transmit diversity).

Suppose that there are only one transmit and nz receive antennas, and hence ng
subchannels with fading coefficients Hy, H, ... ,HnR. Then the utilization of the
potential of the receive diversity is in general terms just a proper combining of signals
received by parallel antennas. It is not a big problem, at least in principle, since the
receiver has signals of different antennas at separate outputs and (knowing the states of
all diversity branches H ;) may process them in the best possible manner. The situation
changes critically with the involvement of the transmit diversity, too. When parallel
transmit antennas operate simultaneously, the receiver runs into the problem of separ-
ating their signals, which are superimposed on each other in every receive antenna, to
further utilize the knowledge of subchannel states H;; and combine subchannel signals in

Transmitter

N .
N Receiver
\\
~z__ WK

Figure 10.8 General model of MIMO system
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an appropriate fashion. To provide a chance of such separation, the data transmission
through ny parallel transmit antennas should be arranged carefully, and ways of
doing this constitute a subject of the problem called space—time coding. The name
reflects the fact that the group of transmitted data bits is mapped one-to-one onto the
two-dimensional ny x n codeword [u/]. The i, ¢ entry u! of the array is a code symbol
transmitted by the ith antenna at the rth time moment, n being the code length. Note
that in some cases the receive diversity may appear infeasible, e.g. in the mobile
radio downlink, where the small dimensions of a handset does not give enough space
for several receive antennas. In these scenarios the transmit diversity and, hence, an
adequate space—time coding become especially valuable. In what follows we assume that
only a single receive antenna is used to concentrate only on investigating the efficiency
of the transmit diversity. This allows us to simplify designations of the channel fading
coefficients, retaining only a single subscript pointing at the transmit antenna: H;, = H;.

10.3.2 Efficiency of transmit diversity

A lot of research has been undertaken to evaluate the Shannon capacity, i.e. the
potential rate of error-free data transmission, of MIMO channels, and the profitable
role of antenna multiplicity has been proved for the basic fading models [108—110].
There is no wonder in the benefits of receive diversity, since extra receive antennas utilize
signal energies from extra space points which would be lost irrevocably with a single
antenna. With the maximal ratio combining of n, identical receive diversity branches,
average power SNR grows n, times (see Section 3.6.1), and although this factor is not
central in the improvement of error probability and channel capacity, it still makes this
improvement readily predictable. Unlike this, the nature of gaining capacity or reducing
error probability through transmit diversity is not that obvious, considering the division
of the limited power resource between multiple transmit antennas. In fact, no gain in
average SNR takes place under the maximal ratio combining of identical diversity
branches with fixed overall power, unless the transmitter knows the channel state and
is able to coordinate transmitting through different branches so that subchannel signals
are summed coherently in the receive antenna. Indeed, let channel state information be
unavailable to the transmitter and the total power P be equally divided between ny
identical diversity branches (antennas, frequency channels etc.). Then the average power
SNR per branch is ¢>/ng, where ¢° is the average power SNR, which would exist at the
receiver with no diversity. Clearly, the maximal ratio combining would only increase
average power SNR per branch n, times, making it equal to the one with no diversity.

Accordingly, there are two contradictory trends in the transmit (as well as frequency
etc.) diversity. On the one hand, increasing the number of branches, given the total
power, provides a greater number of independent subchannels, which, supporting each
other, secure higher probability that at least some of them are not poor. On the other
hand, conditions (branch SNR) in each of the diversity subchannels become poorer with
growth of n,;. An accurate theoretical analysis shows that the first of these factors
overweighs the second. We put aside mathematical derivations concerning the channel
capacity, which may be found in the literature (e.g. [108—110]), but Problems 10.11 and
10.12 contain the plainest examples illustrating the issue. As for the positive effect of
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transmit diversity on the error probability, it becomes obvious from the following
consideration of BPSK data transmission over the Rayleigh fading channel.

Let 4; = |H ,-‘ be an amplitude-fading coefficient of the ith diversity branch with the
average square normalized as 47 = 1. Then the maximal-ratio combined current recei-
ver SNR (see (3.15)) ¢ = 3%, A2(¢*/ny), and, according to (2.19), conditional bit error
probability P.(A;, A2, ..., A,,), with the subchannel states 4;, i = 1,2, ..., ny, fixed, is:

P.(A1, Az, ..., Ay,) = O(qr) (10.34)

To come to the unconditional bit error probability P, we have to average (10.34) in all
subchannel amplitudes 4;, i =1,2,...,n, using their joint PDF W(A4,,4s,...,4,,).
Due to the independence of branches this PDF is just a product of n,; one-dimensional
PDFs of all amplitudes, and:

_77 /OOQ @ [Ad )1 dd,dds ... dd4,, (10.35)
0 0 0

To make the integration variables of (10.35) separable, let us approximate the comple-
mentary error function Q(x) by its upper bound (see Problem 10.13)
0(x) < (1/2)exp (—x?/2), x > 0, coming to:

| e T A2
P <- AT 4 da;
e—zﬂfexp( 2nd) (4)
0

For the channel with Rayleigh fluctuations PDF 1W(4;) obeys the law (3.12), which

leads to:
P <1nd/002A ex 1+q—2 ady = L (2" (10.36)
<=2 Pm 2ng) | T 2\ P ¥ 2y ‘
0

=

Figure 10.9 demonstrates the behaviour of the bit error probability depending on the
total average SNR ¢ for 1, 2, 3, 4, 5 and 6 diversity branches. It is of great importance
that two diversity branches provide a significant energy gain, error probability preas-
signed. For example, if a tolerable bit error probability is no greater than 1074, two
diversity branches cut down the necessary transmitted energy by more than 15dB. At the
same time, with further addition of diversity branches the energy gain grows at a
dropping rate, and, say, transition from 5 to 6 branches promises a saving of only
around 1 dB of emitted energy. This explains why in many practical systems (e.g. mobile
radio downlinks) two transmit antennas are chosen as a good balance between the
diversity gain and equipment complexity.

Note that when the number of branches tends to infinity the right-hand side of (10.36)
turns into (1/2)exp (—¢?/2) (see Problem 10.14), i.e. an upper bound (dashed line in
Figure 10.9) of the bit error probability for the case of a non-fading Gaussian channel. In
other words, by increasing the number of transmit diversity branches one can in the limit
(at least theoretically) completely eliminate the harmful effect of multipath propagation.



Spread spectrum systems development 329

Figure 10.9 Bit error probability versus overall SNR in the transmit diversity scheme for 1, 2, 3,
4, 5 and 6 diversity branches

10.3.3 Time-switched space—time code

There may be different approaches to designing space—time codes depending on the fading
model. Fast fading (see Section 3.5) implies such rapid fluctuations of the multipath pattern
that values of the fading coefficient of the same subchannel at two adjacent symbol intervals
are independent. In what follows we are dealing with the opposite case of slow fading,
assuming that subchannel fading coefficients remain constant over all codeword duration.

To accentuate the non-trivial character of the problem of designing codes securing
separability of the signals of different transmit antennas at the receiving side, let us start
with the simplest example.

Example 10.3.1. Let the fixed power resource P be divided equally between nr = 2 transmit
antennas sending simultaneously the same data symbol with no measures allowing separation
of subchannel signals at the receiver (repetition space—time code). Let a single receive antenna
be used and the fading coefficients H;, H, of two subchannels be independent Gaussian
complex numbers with zero means and equal variances. This is exactly the case of Rayleigh
fading, since magnitudes A; = Hl, i=1,2 are subject to the Rayleigh PDF. With a sent
complex envelope $(t), the received one is (H; + H»)S(t)/v/2, where the square root of two is
responsible for power splitting. It is now evident that two subchannels form the resultant channel
with an overall fading coefficient H= (H1 + Hg)/\/i, which is again Gaussian with zero mean,
and the same variance as any of H;. Therefore, magnitude A = )H’ is Rayleigh and the resultant
channel is again a Rayleigh fading channel. If the mean squares of A; are normalized to one,
A2 = 1, too. Therefore, the resultant channel is absolutely identical to each of the subchannels,
and using two antennas in this case cannot give any benefit as compared to a single antenna. In
other words, the repetition code is a degenerated one, providing no real diversity.
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As the example shows, the number of effective diversity branches may appear smaller
than the number of transmit antennas. One of the most important parameters of any
space—time code is the diversity gain, i.e. the number of really contributing diversity
branches secured by the coding scheme (see Problem 10.15).

The obvious way to provide separation of signals of different transmit antennas in the
receiver is to emit the same data symbol by ny antennas by turns, i.e. with no time
overlapping. In other words, one and only one of the transmit antennas emits the signal
at each time, employing the total power resource. Then the situation is identical to that of
multiuser TDMA communications, i.c. the signal of each antenna is identified by its time
position and is orthogonal to others due to non-overlapping in the time domain. Thereby,
the receiver observes all the subchannel signals not in the mixture but following succes-
sively in time with no mutual interference. Then, knowing the current fading coefficients
H., the receiver is entirely certain of which of these signals are more or less reliable, and
able to combine them in any appropriate way, e.g. maximize SNR by using maximal ratio
weighting. This simplest coding scheme corresponds to the time-switched space—time code.

Example 10.3.2. Consider again the case of two antennas (ny = 2) repeating transmission of
the same current data symbol, this time operating in an intermittent manner: when the first emits
energy, the second is inactive, and vice versa. The receiver observes the signals, one after
another, passing through the subchannels with fading coefficients Hy and H,, both distorted
by additive noise of power 2. To realize the maximal ratio combining, these observations
are summed with weights H,*, i=1,2, respectively, resulting in power SNR (see (3.15))
q? = (A2 + A2)g3/2, where g2 is an overall ‘non-fading’ power SNR per one transmitted data
symbol and halving arises due to splitting the fixed symbol energy between two antennas.
For identical subchannels with magnitudes normalized to one (A_,.2 = 1) average power SNR is,
of course, again the same as in the case of transmitting the whole symbol energy through a
single subchannel: g2 = 2g2/2 = g2. However, if the combiner is treated as the output of the
resultant channel, the latter is no longer Rayleigh and has error probability smaller than
a Rayleigh one under the same average SNR (see Figure 10.9). Thus, two diversity branches
really exist and provide a predicted gain, which is achieved in return for two times smaller
transmission rate per bandwidth unit. Indeed, the transmission rate in bit/s fixed, each antenna
now transmits every data symbol over duration T,/2, i.e. occupying a doubled bandwidth. One
more instructive comparison is with the two-branch receive diversity system (nr = 1, ng = 2). It
is easy to see that if a single transmit antenna uses the full interval T, to transmit a current
symbol, the receiver maximal ratio combiner provides average power SNR q_, =2q2,i.e. 3dB
higher versus that in the transmit diversity scheme, energies per symbol equal. The roots of the
energy loss of the transmit diversity against the receive diversity have been repeatedly pointed
out: splitting total fixed energy between antennas in the transmit diversity scheme.

Time-switched space—time codes are very simple but they realize maximal diversity
gain ny in exchange for widening bandwidth (rate fixed) and discontinuity of transmis-
sion, i.e. increasing signal peak-factor. This strongly motivates the search for space—time
codes allowing separation of signals from different antennas despite their overlapping in
time. The simplest, but very important, example of such codes is introduced in the next
subsection.
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10.3.4 Alamouti space—time code

The coding scheme proposed in [111] exploits two transmit antennas, operates with no
extra bandwidth and offers maximal possible diversity gain for two antennas
ng = ny = 2. Let by and b be two successive data symbols standing for even and odd
time positions, respectively, and belonging to some fixed modulation alphabet (PSK,
QAM cetc.). Codewords of the Alamouti space—time code are 2 x 2 arrays of the form:

_ b() 7171‘ | m

“[3 -]
meaning that code length n = 2. As is seen, at the even symbol interval two antennas
simultaneously transmit code symbols u} = by (first antenna) and u} = b; (second
antenna), while at the odd interval the transmitted symbols are u} = —b7 (first antenna)
and u? = bi (second antenna). To put it another way, the antennas simultaneously
transmit the length 2 sequences u; = (), ul) = (b, —b}) (first antenna) and u; =
(u3, u}) = (b1, b}) (second antenna). This arrangement makes the sequences transmitted
by the two antennas, i.e. vectors u; and u,, orthogonal: (uj, w) = bob; — biby =0,
securing separability of superimposed signals of different subchannels in the receiver.
Actually, however, there is no need to fulfil the separation of subchannels as a special
procedure, since the optimal (ML) detection of data symbols by and b; automatically
includes it, as well as maximal ratio combining. For a clear reason we assume that a
single code symbol transmitted currently by one antenna utilizes on average half of the
total average symbol energy E,. Let Y = (Y, Y1) be an observation vector whose
components Y;, t = 0, 1 are samples of the complex envelope at the symbol matched
filter output for even and odd positions, respectively, normalized for convenience by the
divisor E;/v/2. Then:

YZH]H] —|—H2U2—|—n (1038)

where n is a two-dimensional vector of independent complex Gaussian noise samples
with zero means and equal variances. Then the ML rule (see Chapter 2) gives out by and
by as estimations of data symbols by and b; if they minimize the Euclidean (squared)
distance between the observation Y and the useful component Hyu, + Hou:

d (H]ll] —I—Hzllz, = HY H]ll] —Hzllg” = Y H]ll] —HQUQ,Y H]ll] —Hzllz)

Distributivity and symmetry ((u,v) = (v,u)") axioms of the inner product along with
orthogonality of u;, u, allow getting:

& = ||Y||—2Re [} (Y, u)] — 2Re[H5 (Y, u)] + | [ [l |2+ | B[ o

where d” is a shortened designation for the squared distance in question, or after
substituting uy, u; from (10.37):

&> =|| Y|’ ~2Re[by(H; Yo + H, ¥7)] — 2Re[b}(H; Yo — Hy V7))
+(\H1 !2+|Hz\2) (\bo|2+lb1|2)
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The transformed observation samples:
=H Yo+ Y| 21 =H3Yo - H Y] (10.39)

as well as the norm of the observation vector do not depend on variables by, b, with
respect to which d? _hazs to be minimized. Therefore, in the equation above we are
allowed to replace ||Y||” with |z'0|2+‘z'1|2, coming to:

& = |20 —2Re(bi20) + |b0|2+(}H1 yz+]H2|2—1) 1o
+|z1[*~2Re(b}z1) + |by |2+(|H1 |2+|H2|2—1) b1 ?

It is evident now that minimizing d in by, b L breaks into a separate minimization of two
functions of one Varlable d*(bo) = |20 — bo|*+H2|bo|* and d*(by) = |21 — b\ |*+H?|b, [,
where H? = |H 1] +|H 2] —1, with respect to by and b;. Thus, the estimates of the data
symbols by, b are found as:

by = arg mhax<|z'1 - b,|2+H2\b1|2>, 1=0,1 (10.40)
]

where z; is defined by (10.39) and minimization is done over all values of b; within the
given data symbol alphabet. In the particular case of PSK data modulation |b;|2: 1 and
the only component of the first term of (10.40) dependent on b, is Re(b;Z;), which turns
the decision rule into the ordinary form of PSK demodulation (see Section 7.1.2), but
based on the modified matched filter statistics Zz;:

b = argmbax[Re(b}‘z'/)], [=0,1 (10.41)
1

Let us fix transmitted symbols b;, / = 0,1 and fading coefficients H;, i=1,2. Then
useful components of the decision statistics z;, / =0, 1 can be evaluated by averaging
Yo and Y in (10.39) with respect to an additive noise. Denoting this operation by E,{-},
we obtain (see (10.38)) E, {Yo} H\by + H>by, E, {Yl} = —H1b + H,b?, so that:

Eu{z0} = (A3 + ADbo, Efz1} = (4} + A3)by

where, as before, 4; =
is formed as though no separation problem existed and each symbol were transmitted over
two independent diversity branches, further maximal-ratio combined (see Section 3.6.1).
In the same way, the variance o> of a real or imaginary part of the additive noise
entering 2, is o2 = (42 + A43)0? where o2 is the variance of the real part of a noise
sample in (10. 38) Then power SNR ¢? for each of the statistics z;, / = 0, 1 is:

» Bz (A3 + )b
4z = > 5}
[0

z

a

Now take into consideration the randomness of 4;, i = 1,2, b;, [ =0, 1, and average qfl

with respect to all random factors to come to the mean SNR q_f, for each of the statistics
2, 1=0,1. Under a natural normalization of fading coefficients and modulation
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alphabet A2 =1,i=1,2, | =1,1=0,1, ¢% = 2/o?, and since n in (10.38) was nor-
malized by E;/v/2, and noise variance at the symbol matched filter output is NyE;/2
(see (2.15)), 0 = No/E,. The resulting equation is then ¢% = 2E;/N, = ¢2, showing that
the Alamouti scheme, as well as the time-switched code, preserves the same average
symbol SNR as the no-diversity scheme, providing diversity gain n; = ny = 2. We stress
again that the advantage of the Alamouti code against the time-switched one is the
absence of pauses in emission, entailing better peak-factor and higher spectral efficiency.
The Alamouti code is a full-rate one, meaning that two independent modulation
symbols are transmitted over two-symbol duration. In general, a space—time code of
length n, which allows transmitting k independent data modulation symbols, has rate
R = k/n. Full-rate codes are preferable, since they involve no extra bandwidth compared
to a single-antenna transmission. The existence of more full-rate codes securing maximal
diversity gain n; = nr strongly depends on the modulation alphabet. For real modula-
tion alphabets (e.g. BPSK) full-rate codes exist for several values of the number ny of
transmit antennas, while for complex modulation symbols (QPSK, QAM etc.) the
Alamouti code is unique® [112]. At the same time, several interesting constructions
of space—time block codes become available for both complex and real alphabets if
the full-rate restriction is removed [110,112] (see also Problems 10.16 and 10.17). We
refer the reader wishing to gain more information on this issue and become familiar with
other aspects of space—time coding to works [110-113] and the papers cited in [110].

10.3.5 Transmit diversity in spread spectrum applications

Seemingly the spread spectrum concept offers a very direct and easy way of providing
transmit diversity. Indeed, the main bottleneck of the transmit diversity is separation of
signals emitted simultaneously by different transmit antennas at the receiver side. One
may get round this stumbling block by spreading the signals of different antennas using
different (orthogonal) spreading codes. This at first sight obvious tool of the transmit
diversity is, however, far from universal. As a matter of fact, orthogonal sequences in
CDMA systems are a deficit resource, since their number determines the potential
number of users. Thus, in a saturated (K = N ) or, more so, oversaturated (K > N)
CDMA downlink there are no spare orthogonal sequences for arranging transmit
diversity, which makes the space—time bandwidth saving codes equally valuable in
CDMA applications, too.

The way of incorporating the Alamouti code into the DS CDMA downlink is straight-
forward and does not require an extra signature resource. Let Si(7) be the complex envelope
of the kth user signature (treated as a signal of the same duration 7), as the data symbol) and
b0, bi,1 be even and odd data modulation symbols sent to the kth user. Then it is enough
only to use in the array (10.37) the DS spread symbols bk,o.S"k(t) and by, 1S(7) in place of
bo, by, respectively, to arrange the transmit diversity on the basis of a fixed signature S (7).

2 We do not consider as different trivial modifications of (10.37) preserving row orthogonality and row norms,
like a common conjugation or/and multiplication of rows by —1 as well as by any fixed complex number of
magnitude one.
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The first and second antennas then transmit the signals bk,OSk(t) — by, 1SZ(t —T,) and
bx, 1Sk(t) + b,f,’OSZ(t — T,), respectively, over two consecutive symbol intervals. Despread-

ing these signals by the reference S‘Z(r) + Si(t — T,) removes the signature and turns
the entire problem into the one discussed in the previous subsection. This principle, with
a slight modification, is used in the UMTS downlink for arranging an open loop (without
user-BS feedback) transmit diversity [114,115]. To be fair, processing synchronization
signals (time-delay measurement) encoded by Alamouti code in a user’s terminal would
appear much more complicated as compared to data demodulation. For this reason the
transmit diversity mode employed in the synchronization channel is the time-switched
coding touched upon in Section 10.3.3 [115]. One more interesting detail is using closed-
loop diversity in the dedicated (i.e. assigned to a specific user) physical channels. Based on
the feedback MS-BS data, the BS knows the current state of the channel linking the BS with
the specific user and adjusts the phases of the signals of two transmit antennas to make
them sum coherently at the terminal input. The amplitudes of the transmitted signals may
also be adjusted to realize the maximal ratio combining in the receive antenna and bring the
efficiency of transmit diversity nearer to that of the receive one. The cdma2000 downlink
specification includes some similar solutions concerning transmit diversity.

Problems

10.1. Let the first signature a; be a linear combination of the other signatures. Prove
that the linear system (10.12) has no solution, i.e. suppression of MAI automatic-
ally removes the useful effect too.

10.2. There is a three-user synchronous DS CDMA system. The signatures are binary of
spreading factor N=3:a; =(+——),ay=(—+ —),a3 =(— —+). Find the
reference of the first user’s decorrelating receiver, demonstrate elimination of
MAL and evaluate SNR loss of the decorrelating algorithm to the matched filtering.

10.3. Derive the gradient of the function (10.19) and prove that u given by (10.20) is the
point of minimum of this function.

10.4. Prove the matrix inverse lemma in the form (10.21).

10.5. Find the reference vector for the MMSE detector for the conditions of Problem
10.2, setting all signature amplitudes and noise variance equal to one. Calculate
SINR at the MMSE detector output, compare it with those of the decorrelating
detector and matched filtering (Problem 10.2), and explain the results.

10.6. A synchronous CDMA system accommodates 128 users within the spreading
factor N = 96. The signatures are columns of the 128th order Hadamard matrix,
in which 32 rows are discarded. Find MMSE reference vectors for all users, if their
signals have equal intensities.

10.7. The MC-DS-CDMA downlink is realized using three subcarriers. Data is transmitted
at each subcarrier by BPSK at the rate 32 kbps with spreading factor 64. The guard
frequency interval equals 0.5/A, where A is signature chip duration. How would the
potential number of users change if DS-CDMA replaced MC-DS-CDMA?

10.8. Data should be transmitted using QPSK at the rate 2.88 Mbps over a channel
whose coherence bandwidth B, = 50 kHz. Find the minimal number of subcarriers



Spread spectrum systems development 335

10.9.

10.10.

10.11.

10.12.

10.13.

10.14.

10.15.

10.16.

10.17.

necessary for MC transmission. What is the minimum length of DFT in
the OFDM scheme, if the overhead due to the guard intervals should not
exceed 10%?

A synchronous MC-CDMA downlink in the OFDM version transmits data
using QPSK at the rate 40kbps over the channel with delay spread
Tmax = 10 us. How many users can it serve if all undistorted signatures are
orthogonal and the overall bandwidth is 5 MHz?

Would it be reasonable to use zero-forcing combining in MC-CDMA operating
on the Rayleigh subchannels?

Suppose that ng antennas receive in parallel the signal transmitted by a single
antenna, intensities of all received signals are the same, as well as of independent
Gaussian noises corrupting the signals. How does the Shannon capacity of such
a channel differ from that corresponding to a no-diversity case, if the receiver
knows the path length differences of all signals?

Suppose that a transmitter is capable of transmitting data involving n,; independ-
ent identical diversity branches, total transmitted power being fixed. Suppose
that the intensities of all received signals are the same, as well as the independent
Gaussian noises corrupting the signals, and the receiver (but not the transmitter!)
knows the path length differences of all signals. What is better from the angle of
Shannon capacity: to transmit the same or different datastreams over ny
branches?

Prove the wupper bound on the complementary error function:
O(x) < (1/2)exp (—x?/2) for any x > 0.

Prove convergence of the right-hand side of (10.36) to the upper bound of the
error probability for a single non-fading branch: (1/2)exp (—¢?/2), when the
number of branches grows without limit.

According to the strict definition [110,112,113] the diversity gain is the minimal
rank among all pairwise differences of distinct space—time codewords, i.e. ny X n
arrays [u']. Prove that for the Alamouti code this diversity gain equals 2.

Find the rate (in data symbols per code symbol) and diversity gain of the space—
time code with real symbol codewords [112]:

by —by —by —b;
u= b] b() b3 —bz
by, —by by by

Find the rate (in data symbols per code symbol) and diversity gain of the space—
time code with complex symbol codewords [116]:

bo bi b5 0
u=|-b by 0 b
by, 0 by b
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Matlab-based problems

10.18. Write and run a program simulating conventional, decorrelating and MMSE
detectors for arbitrary synchronous signature set and random user signal inten-
sities. Recommended steps:

10.19.

(a)
(b)

(©
(d)

(©
()

Form the N x K matrix of K normalized signatures of length M.

Take the first user’s amplitude equal to one and all the rest random, obeying
the Rayleigh law with unit square mean.

Add Gaussian noise to the amplitude-scaled signatures with variance corres-
ponding to a pre-assigned bit SNR g¢j.

Find the references and calculate SINR for all three types of the first user
detector (the decorrelating one does not exist for linearly dependent signa-
tures).

Varying the noise level, signature intensities remaining fixed, build the SINR
curves in dependence on bit SNR g5.

Study the cases of the following signature sets: orthogonal sequences
(K < N), cyclically shifted m-sequences (K < N) and Welch-bound
sequences (K > N), and comment on the results.

Write and run a program illustrating the principle of OFDM modulation and
demodulation (see Figure 10.10). Recommended steps:

(a)
(b)

Set the number of DFT points (frequencies) M..
Form and plot a random pattern of M. source bits.
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Figure 10.10 Simulating OFDM for M, = 32
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10.20.

10.21.

(©
(d)
(©

®
(2

(h)
(M)
0

Calculate the IDFT of the bit pattern.

Attach a cyclic prefix and plot the OFDM symbol obtained.

Set a random channel delay profile, i.e. integer delays, amplitudes and phases
of multiple paths; take the delay spread within 4-6, Rayleigh amplitudes and
uniformly distributed over [—m, ] phases, all independent of each other.
Calculate and plot the OFDM symbol distorted by the channel.

Discard the prefix and tail (due to a channel delay) samples, and calculate
the DFT of the vector obtained.

Calculate the channel transfer function and divide the DFT by it.
Demodulate the samples obtained into bits.

Plot the demodulated bit pattern and compare it with the transmitted one.

Write a program to analyse the effect of choice of orthogonal MC-CDMA
signatures on the peak-factor of multicarrier symbols. Run the program for the
Walsh-function signature set and complex signatures being cyclic shifts of the
polyphase codes of Section 6.11.2. Explain the discrepancy in peak-factor for
these two signature ensembles.

Write a program demonstrating the gain of Alamouti space—time coding versus
the no-diversity system for BPSK data transmission over the Rayleigh channel.
Recommended steps:

(a)
(b)

©
(d)

()
)

(2

()

()
0

)
)

Take a stream of L, = 10*—10° random independent bits.

Set their amplitudes independently according to the Rayleigh fading model
with the average square equal to one.

Add Gaussian noise of a suitable variance to have pre-assigned average bit
power SNR ¢2.

Demodulate the observation obtained and calculate the empirical bit error
rate.

Split the original bit stream into pairs of even and odd bits.

Encode every pair of even and odd bits by rule (10.37), forming two new
streams of length L, corresponding to two antennas.

Form two subchannel amplitude vectors, consisting respectively of even and
odd elements of the set of item (b); assign to every element of these vectors
random independent phase uniformly distributed over the interval [—, 7].
Use the first of vectors of item (g) to imitate Rayleigh fading in the first
subchannel, assigning its elements to every pair of consecutive bits of the
first antenna bit stream as complex amplitudes; do the same for the second
antenna bit stream using the second vector of the previous item.

Sum the vectors obtained, dividing the result by v/2, and add the same noise
as in item (c).

Demodulate the observation obtained according to rule (10.41), which for
BPSK takes the simplest form: b; = sign[Re(z))], / =0, 1.

Calculate the empirical bit error rate and compare it to that of item (d).
Run all previous steps, varying bit SNR, and build empirical dependences
of the bit error rate on SNR for both transmission modes; compare the
results with those predicted from Figure 10.9 and explain the discrepancy,
if any.
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Examples of operational wireless
spread spectrum systems

11.1 Preliminary remarks

As was repeatedly underscored in previous chapters, spread spectrum is the basic
philosophy of numerous up-to-date and forward-looking wireless systems, ranging from
radar and navigation to mobile radio and local area networks. The commercial benefits
of spread spectrum technology are brightly confirmed by the impressive market success
of 2G cdmaOne (IS-95) mobile telephone, as well as by the consolidation of the
international telecommunication community in approving of CDMA as the primary
3G-and-beyond platform. There are a good deal of candidates to illustrate real applica-
tions of spread spectrum and CDMA, but we will dwell on only three of them in this
chapter, chosen for their outstanding importance both today and in the years ahead,
along with their high educational instructiveness. The systems under discussion have
already been referred to in the text exemplifying practical implementation of some or
other particular principle or idea.

11.2 Global positioning system

It is quite natural for an object moving on the earth’s surface or in space to be interested
in knowing its current position. The problem of positioning is the basic aim of naviga-
tion. Modern navigation equipment is required to inform a user about his instantancous
coordinates, velocities along all coordinate axes, current precise time, predicted position
at one or another moment, etc. The most advanced and universal system providing a
solution to these tasks is the Global Positioning System (GPS), the operational
capability of which was officially declared by the USA in 1993.

Spread Spectrum and CDM A: Principles and Applications Valery P. Ipatov
© 2005 John Wiley & Sons, Ltd
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11.2.1 General system principles and architecture

Three coordinates may describe the position of an object on or above the earth’s surface,
i.e. latitude, longitude and altitude. In trying to determine them, the object may measure
distances (ranges) to three fixed points (beacons) whose coordinates are known in
advance with high accuracy. This results in three equations whose three unknowns are
exactly the coordinates of the object. In solving them the object learns its own position.

In radio navigation distances are measured via the propagation delay of signals
transmitted by the beacons: the distance is just the product of the propagation delay
and the speed of light. All beacon transmitters are typically strictly synchronized to each
other, operating in a unified system time. Unlike this, the clock of any individual user is
usually biased relative to system time, and due to frequency drift and instability the user-
to-system clock offset proves to be an additional (fourth) unknown. Fixing the time of
arrival of a beacon signal versus his local clock, the user will not learn the true
propagation delay, since the time-offset is added to it. The easiest way to eliminate this
unknown contribution would be to measure the distance by a two-way ranging method,
where a beacon sends its signal in response to the user’s ranging signal. This, however,
implies that users are active, i.e. emitting some energy. The necessity for a beacon to
distinguish users’ request signals and respond to each of them individually puts a strict
limit on the system throughput, i.e. the number of users served. Serving an unlimited
number of users is possible only with one-way-ranging, where all the users are passive,
i.e. receiving only, which is often desirable for security reasons, too. Then the user
receiver can get around the problem of the user-to-system time-offset by measuring
times of arrival of signals of four beacons instead of three. Each time of arrival will then
contain a ‘genuine’ propagation delay plus the same unknown clock offset. Multiplied
by the speed of light these measurements give pseudo-ranges: true ranges plus the
product of the clock offset and speed of light. Thus, the user now has four equations
with four unknowns, solution of which produces the user position as well as an estima-
tion of the time-offset. This allows the user to fulfil simultancous positioning and
timing.

The GPS is a space-based system meaning that satellites bearing navigation trans-
mitters serve as beacons. Placing transmitters onboard the satellites opens the way to
employing UHF radio waves for transmitting the navigation signals. Compared to the
longer waves characteristic of earlier ground-based navigation systems (Loran, Omega
etc.), UHF waves propagate only along a straight line, with no diffraction, so that trying
to employ them in terrestrial transmitters would make positioning possible only within
the horizon zone around a beacon. At the same time, the UHF band is much more
favourable than longer waves with regard to the dimensions and mass of transmit and
receive antennas as well as many other equipment components. The way of reconciling
the desires to use the UHF band and to achieve a large coverage area of a navigation
transmitter is now rather clear: just put a UHF transmitter onboard a satellite. If the
satellite elevation above the earth is high enough, the transmitter will ‘illuminate’ a large
spot on the earth’s surface, i.e. meeting the requirement for the size of the navigation
coverage zone.

The architecture of the GPS includes three basic segments. The space segment con-
tains 24 main satellites (plus several reserve ones) deployed in 6 nearly circular orbits
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with 4 vehicles in each. The orbits are spaced 60° from each other in longitude, 55°
inclined to the equator and have about 12 hours sidereal period. Such a space con-
stellation makes no fewer than four satellites observable simultancously above the
10°-elevation at any time of day and at any point on the globe. For most of the time,
however, the number of observable satellites is greater, sometimes as high as 10. The
higher the number of simultaneously visible space vehicles, the better is positioning and
timing accuracy. Every satellite bears an atomic (rubidium or caesium) clock having
extremely high stability: a day’s drift is around or less than 10~'* of the nominal
frequency. Weather conditions have rather a small effect on the propagation of waves
of the GPS band, so that the space segment provides all-time, all-weather positioning all
over the globe.

As was pointed out, a user is capable of calculating his position from the measured
distances if and only if he is aware of the beacon coordinates. Since satellites revolve
on their orbits, their coordinates change constantly and their instantaneous values
should be available to a user at any time when he wants to fix his position. The
instantaneous location of a satellite on an orbit is not absolutely deterministic due
to random disturbances of one or another nature. Similarly, satellite clocks, although
very stable, will sooner or later accumulate relative time-offsets, destroying position-
ing accuracy. Hence, it is necessary to monitor satellite positions and clock behaviour
and keep users informed of them. To facilitate this procedure there is a control segment
of GPS consisting of a main control station in Colorado Springs, Colorado, and five
monitoring stations located in Colorado Springs, Hawaii, Kwajalein, Diego Garcia
and Ascension Island. The monitoring stations run continuous tracking of all satel-
lites, measuring their clock parameters, testing satellite state, etc. and via special
communication links transmit the data to the master control station. The latter
computes the current and predicted satellite locations, time-offsets and other relevant
parameters, and transmits the fresh data to one of three ground control stations
located at the same sites as the monitoring stations (Kwajalein, Diego Garcia and
Ascension Island). The ground control stations upload the data to the GPS satellites,
employing a dedicated S-band uplink.

The user segment covers all users equipped with GPS receivers. There are a lot (at least
hundreds) of receiver models currently on the market ranging from the simplest and
cheapest handheld devices (used for sport or recreation) to very sophisticated and
expensive models, designed for military purposes, surveying etc.

11.2.2 GPS ranging signals

The master atomic oscillator of every GPS satellite outputs the frequency 10.23 MHz.
Coherent frequency multiplication by 154 and 120 times produces two L-band frequen-
cies L1 = 157542 MHz and L2 = 1227.60 MHz, further modulated by GPS ranging
codes. There are two ranging codes: C/A-code (coarse acquisition or clear access code)
and P-code (precision or protected code). Each satellite is assigned its specific pair of
C/A- and P-code sequences. The upper carrier L1 is a basic one and its signal is available
to any GPS receiver, while the lower frequency L2 is planned to be used by only
authorized users for high-precision fixing.
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Explanation of why two carriers help in accurate positioning lies in the propagation
characteristics of the ionosphere, an upper atmosphere layer over 50 km above the earth.
Having a high concentration of free ions and electrons due to the ionizing effect of the
solar ultraviolet and X-ray radiation, the ionosphere is a dispersive medium, in which
the ranging signal propagates at a speed different from that in vacuum, acquiring some
additional delay. Unfortunately, this extra delay cannot be precisely pre-calculated due
to the fast random fluctuations of medium parameters. On the other hand, the general
character of dependence of an ionospheric delay on frequency is well approximated by
an inverse square dependence with unknown proportionality coefficient. The latter may
be found as the only unknown of the equation obtained by measuring the delays of
identical signals on two properly spaced frequencies and subtracting the results. On
completing this, the ionospheric correction can be found and removed from the meas-
ured pseudo-range.

A C/A-code sequence serves to arrange a scale for positioning with moderate accur-
acy. It is a Gold one (see Section 7.5.2) of length N = 1023 with chip duration (smaller
than 1 ps) resulting in the signal period equal to 1ms sharp. Certainly, the number
(1025) of existing Gold sequences of length N = 1023 is many times more than necessary
for all GPS satellites, so that only some of these sequences are utilized. Periodically
repeated Gold sequences modulate frequency L1 only and are continuously transmitted
by satellites. Despite all satellites being strictly synchronized, the distances from them to
a user change in the course of their revolution, so that the signals of different satellites
arrive at the receive antenna with mutual time-offsets varying significantly. Since every
satellite is identified by its specific Gold sequence and all these signals have low
asynchronous cross-correlations, the user receiver is capable of separating each individ-
ual satellite signal from the others. In other words, the C/A-code scale of the GPS space
segment employs Gold-ensemble-based asynchronous CDMA. Transmission of satellite
coordinates (ephemeris) along with other relevant data (clock error versus the GPS time,
corrections for propagation effects, satellite state etc.) is arranged in a DS spreading
manner (see Section 7.1): the data bit stream with rate 50 bps BPSK directly modulates
the Gold sequence before modulation of the L1 carrier. Thus, every data bit spans 20
periods of a Gold sequence, theoretically neutralizing corruption of correlation proper-
ties due to the presence of data modulation (see Section 7.3). The minimum package of
data (frame) necessary for positioning occupies 1500 bits (30s) organized into 5 sub-
frames, each containing 300 bits. The first three subframes are repeated unchanged
(except for reloading fresh data) in each frame, while the contents of the rest vary during
the superframe covering 25 frames. For better transmission reliability the data stream is
encoded by a (32,26) extended Hamming code. One important sort of data transmitted
in the 4th and 5th subframes is the almanac: raw ephemeris of other satellites of the
system. On capturing the signal of any one satellite the user gets the rough positions of
the others and may use this information to accelerate the search for signals of the other
satellites (see Section 8.3.1).

The C/A-code provides standard precision of positioning and is available to any
user equipped with a GPS receiver on a free-of-charge basis. The P-code is intended
for higher precision positioning and so has chip duration 10 times smaller against the
C/A-code (below 100 ns) or 10 times wider bandwidth (see Section 2.12.2 to recollect
the relation between bandwidth and ranging accuracy). To realize the two-frequency
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ionospheric error compensation described above, the P-code (DS-modulated by the
data bit stream similarly to C/A-code) is transmitted on both frequencies L1 and L2,
quadrature multiplexing of C/A and P signals being used on L1 with 3 dB stronger C/
A-signal. In its turn, the L2 intensity is 3 dB lower than that of L1. The structure of the
P-code is described in open GPS documents. It is formed as a symbol-wise modulo 2
sum of two very long binary sequences differing in length by 37 chips. The resulting
period of the sequence thus formed is around 266 days. The non-overlapping 7-day
(6.187104 x 10'? chips) segments of this sequence are used as P-codes for different
satellites. The USA Department of Defense commissioned the designers of GPS to make
provision for strict limitation of access to the P-code, reckoning that unauthorized usage
of it may be hazardous to national security. Encryption of the P-code is realized by its
modulo 2 summation with a masking or key W-code, whose structure is secret. The
resulting Y-code possesses excellent cracking resistance (see Example 3.3.1).

11.2.3 Signal processing

The basic operations of a single-frequency (L1) GPS receiver are very conventional for
any DS spread spectrum system. After a coarse acquisition of a satellite C/A-signal (see
Sections 8.2 and 8.3), aided when possible by a priori knowledge of satellite locations,
the code delay-lock loop (Section 8.4) is locked and starts to output a sequence of
estimations of a satellite pseudo-range. Typically, modern GPS receivers include a set of
channels processing in parallel the C/A-signals of all visible satellites. On finishing the
search for the last used satellite, the receiver is ready to produce the user’s coordinates,
which is a steady-state process lasting for as long as the user wishes.

The authorized receiver repeats the same operations for the P-codes of both carriers,
spending only a little time on searching the signals, since the data frame available from
the L1 signal contains a special handover word which facilitates setting the local
generator of the P-code to an appropriate initial state.

In many modern GPS receivers these basic operations are supplemented or replaced
by a variety of others pursuing improvements of accuracy, speeding up of the initial
fixing time, consumer convenience etc. For example, additional accuracy may be gained
by measuring pseudo-ranges via integration of the carrier frequency of the received
signal. The instantaneous Doppler frequency shift is proportional to the radial speed of
the satellite relative to a user. Hence, the integral of the Doppler frequency over some
period is proportional to variation of the satellite—user distance over this time interval.
Having started from the point with precisely known coordinates, the receiver may
further position itself via integrals of instantaneous frequencies of visible satellites, i.e.
their current accumulated ranges. Moreover, methods of ambiguity resolution exist,
making possible positioning through frequency integrals even without initialization at a
known point [117,118].

Another hugely popular operational technique is so-called differential or relative
positioning, the idea of which is as follows. Let one GPS receiver be set up at the
reference site (base) with precisely known coordinates. Then comparing pre-computed
satellite ranges with the measured ones, the base receiver can find systematic errors
(biases) inserted by system imperfection. Let another receiver be placed at a remote
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point with unknown coordinates. If the baseline, i.e. the distance between the base and
remote receivers, is not very long (e.g. within tens of kilometres) the systematic errors at
the base and remote sites are strongly correlated, so the remote receiver may subtract
biases estimated by a base receiver from measured ranges, improving their accuracy. Of
course, such system modification should contain a communication link providing
delivery of base-receiver data to the remote receivers. A vast number of reference sites
are now arranged all over the world, transmitting differential corrections via FM
stations, broadcasting satellites, radio beacons, cellular radio, Internet etc. [117,118].

11.2.4 Accuracy

The originally planned precision of C/A-code GPS positioning was set up around 100 m
in the horizontal and 156 m in the vertical directions, the probability of keeping errors
within these limits being 95%. Analogous figures for the P-code fixing were 16 m and
23 m, respectively. However, numerous advanced receiver structures developed by manu-
facturers have exhibited much better precision even without involving the P-code. This
became a matter of anxiety for the US institutions responsible for national security, and
in 1990 a selective availability mode was introduced, distorting satellite-transmitted
ephemeris and timing and thereby deliberately corrupting positioning accuracy. During
the subsequent decade, however, differential navigation, which eliminates these types of
errors almost entirely, gained great popularity, so the selective availability mode turned
out to be pointless in practice and was terminated in 2000. Nowadays a wide spectrum
of offers is characteristic of the GPS equipment market, with proclaimed accuracies
ranging from tens of metres to several millimetres and better.

11.2.5 GLONASS and GNSS

The Russian space-based navigation system GLONASS has many common features
with GPS. Its space segment consists of 24 satellites located in 3 nearly circular orbits
with nominal sidereal period 11 hours 15 minutes and 64.8° inclination to the
equator. Again, two frequencies L1 and L2 (respectively in the 1.5 and 1.2 GHz
bands) are used to provide ionospheric correction, with C/A-code transmitted on
L1 and P-code transmitted on both carriers. Current ephemeris and other relevant
data encoded by Hamming code and properly arranged into subframes and frames
are superimposed onto ranging codes in a DS manner and transmitted by satellites at
the rate 50 bps. A control segment provides continuous monitoring of satellites,
computation/prediction of their orbit parameters and uploading them to the satellite
onboard memory.

The substantial difference between GLONASS and GPS is that all satellites transmit
the same C/A-code, which is a binary m-sequence of length N = 511 with real-time
period 1 ms. Distinguishing individual satellite signals is possible due to the small
mutual carrier offsets between them, transforming the common C/A code into an
ensemble of frequency-offset replicas of the m-sequence, as described in Section 7.5.1.
In order to save bandwidth antipodal satellites of the same orbit (which are never seen
by a user simultaneously) employ the same frequency offset.
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The accuracy of GLONASS is of the same level as that of GPS. Both systems are now
considered as cooperative, entering the integrated Global Navigation Satellite System
(GNSS). It has already been emphasized that increasing the number of processed
satellite signals improves the positioning precision, so joint use of both constellations
is obviously profitable. In addition, scenarios are not rare, where some satellites over the
horizon are obstructed (e.g. by an aircraft wing), so that the total number of available
ranging signals within only GPS or GLONASS is not sufficient for positioning. Then
again, joint processing of GPS and GLONASS signals may give a considerable gain in
positioning integrity. A great number of receiver models presently on the market or in
development are capable of combined processing of signals of both systems.

11.2.6 Applications

The role of satellite-based global navigation systems in the modern and future world can
hardly be overestimated. Just simply naming the areas of their involvement forms rather
a long list, including traditional navigation of ships, aircraft and terrestrial moving
objects (cars, trucks etc.), transit systems, mapping utilities (e.g. pipelines), monitoring
forestry and natural resources, farming, civil engineering, geodetic surveying, seismic
forecasting, airborne mapping, seafloor investigations and many more. Not being able
to go deeper into this fascinating topic, we direct the interested reader to the sources
[117-119] and their references.

11.3 Air interfaces cdmaOne (IS-95) and cdma2000

11.3.1 Introductory remarks

The first interim specifications of the 2G CDMA cellular telephone of standard 1S-95
(presently referred to as cdmaOne, too) were published in 1993-1995, and the oper-
ational phase of IS-95 networks started in 1996. Nowadays networks of this standard
cover huge territories serving tens of millions of consumers. Its impressive commercial
success, widely recognized high quality of service and openness to further moderniza-
tions were among the decisive factors favouring the CDMA philosophy as the basic
platform for the next generations of mobile radio (3G and beyond).

Initially IS-95 was meant to gradually replace (maintaining compatibility with) an
American analog standard, AMPS, operating in the 800 MHz range. The 1S-95 docu-
ments set up frequency division separation of forward (869-894 MHz) and reverse (824—
849 MHz) links,' while no limitation on frequency reuse in neighbouring cells or sectors
was stipulated. The nominal bandwidth of the IS-95 signal is about 1.25 MHz, so that
within the total assigned 25 MHz band an operator has remarkable freedom in carrier
selection and frequency planning of the network. All the BSs entering a network are
strictly synchronized via GPS to operate in a unified time scale, allowing MS easier

! The terms “forward’ and ‘reverse’ links are synonyms of downlink (BS to MS) and uplink (MS to BS) adopted
in the cdmaOne and cdma2000 specifications.
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switching from one BS to another (handover). IS-95 and its 3G evolution cdma2000 are
typical DS spread spectrum systems, which clearly manifest all the benefits of this
technology. They also possess very high educational value, since they demonstrate in
a lucid form practical ways of realizing many ideas studied above. In the text to follow
we are going to dwell on only the most general principles of spreading, channelization,
coding and modulation in the IS-95 and cdma2000 air interfaces. Readers who wish to
acquire deeper knowledge may consult the sources [18,69,83,120,121] and many others.

11.3.2 Spreading codes of 1S-95

The spreading sequences used in the IS-95 standard were partly mentioned in examples
earlier. They are designed to provide CDMA separation of physical channels, distin-
guishability of signals of different BS arriving at the MS receiver and privacy of the
transmitted data. Synchronous CDMA multiplexing of physical channels of the forward
link served by a fixed BS is realized on the basis of Walsh sequences (see Section 2.7.3) of
length N = 64. The orthogonality of Walsh sequences allows separating the correspond-
ing 64 physical channels theoretically with no MAI. The duration of a chip of Walsh
sequences is nearly 0.81 us and the chip rate is 1.2288 Mcps (megachip per second),
resulting in the abovementioned bandwidth of 1.25MHz. Certainly, the number of
forward-link physical channels thus implemented is 64 and, consistent with the CDMA
principle, they occupy the same common bandwidth with no frequency or time offset.
All of the base stations use the same set of 64 Walsh functions, and the spreading by
so-called short codes makes the signals of different base stations separable from
each other in the MS receiver. There are two different basic binary short-code pseudo-
noise sequences, PN-I and PN-Q, used in the in-phase and quadrature-phase branches
of the BS modulator, respectively. They are primarily generated as two m-sequences
whose LFSR generators (see Section 6.6) contain 15 flip-flops and are defined by
the primitive polynomials f7(x) = x> +x +x” + ¥ + x7 +x°+1 for PN-I and
Jo)=xP + x4+ x4 x10 4 X6+ x> +x*+x3+1 for PN-Q. The sequences
obtained have length L = 25 — 1, but to come to the short codes PN-I and PN-Q they
are extended by one more zero symbol following after 14 consecutive zeros. This brings
the lengths to N = L 4 1 = 25 = 32768 chips, and with the same chip rate as for Walsh
codes there are 37.5 periods of the short codes per second or 75 periods over two
seconds. To discriminate between different base stations every one of them employs
its BS-specific time-offset replica of the basic short-code sequences. There are 512 such
pairs of replicas, every pair being shifted compared to the previous one by 64 chips or
about 52 pus. The network planning should assign short-code pairs to the base stations in
a way guaranteeing low risk of any MS receiving a signal from an unintended BS, whose
timing due to propagation delay is about the same as that of the desired signal and
whose strength is sufficient for mixing them up. It should be stressed that relative time-
offsets between the base stations entering a network, once set up, remain constant
forever, since all the BS use GPS receivers to synchronize their clock oscillators with
each other.

One more spreading code is a long code, generated primarily as a binary m-sequence
of memory 42. According to the specification a primitive polynomial of the LSFR
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42-stage generator of the long code prescribes feedback taps from flip-flops with
numbers (counting left to right) 7, 9, 11, 15, 16, 17, 20, 21, 23, 24, 25, 26, 32, 35, 36,
37, 39, 40, 41 and 42. The m-sequence thus obtained is again extended by inserting one
extra zero after a run of 41 consecutive zeros to come to the length N = 2*?. Using the
same chip rate as before, the long code has period over 42 days. Different user-specific
time-offsets (masks) of the long code are used in both the forward link for data
protection and the reverse link for CDMA separation of MS signals along with simul-
taneous data protection (see below).

11.3.3 Forward link channels of 1S-95

Logically, i.e. by their information content, there are four types of forward channels:

pilot channel
synchronization channel
paging channels

traffic channels.

11.3.3.1 Pilot channel

The pilot channel is unique for an individual BS and transmits ‘pure’ short code but no
other data. It looks as though a data sequence of only zeros is DS spread by a short
code. Being received by the MS it provides synchronization of its clock with the system
(i.e. BS) clock up to the accuracy sufficient for forming a receiver coherent reference to
despread and demodulate the received signal. Since the short-code period contains an
integer number (512) of periods of Walsh sequences, these latter generated locally are
automatically aligned with the spreading Walsh codes of the received signal after a
receiver searches and DLL-captures the pilot signal.

The Walsh function, being the first row of a Hadamard matrix of size 64 and
consisting of only positive ones, physically separates (channelizes) the pilot channel
from others. It is convenient to generate Walsh functions digitally, using binary {0, 1}
logic, and then replace the zeros and ones by plus and minus ones, respectively, as (6.15)
does. Figure 11.1a shows a simplified structure of the pilot channel where W}, symbol-
izes binary {0, 1} Walsh function number zero consisting of only zeros. As long as
spreading by a short code is done for all forward channels commonly in the modulator,
i.e. after summing signals of all channels, this operation is shown in the figure to come
later. Trivially speaking, the pilot channel shown in Figure 11.1a feeds the modulator by
a sequence of only plus ones.

11.3.3.2 Synchronization channel

The synchronization channel is also unique for any individual BS. Figure 11.1b illustrates
its general structure. Along with some other information, it transmits the data enabling
the receiver to get a user-specific long-code mask and thereby synchronize its local long-
code replica with the one used by the BS for data encryption and placing power control
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Figure 11.1 Simplified structures of pilot (a) and synchronization (b) channels

bits (see below). The raw data has rate 1.2 kbps and is arranged in frames whose duration
coincides with the period of the short code (26.67 ms), each three frames combined in a
superframe of 96 bits. The superframes are encapsulated in a message capsule, including
30 CRC symbols (see Example 9.2.4) to realize a message quality indicator. A convolu-
tional code of rate 1/2 and constraint length 9 (see Section 9.3) provides strong protection
for the data against channel interference. No tail bits are inserted, i.e. coder and decoder
are not reset to the zero state at the end of every frame. The encoded stream rate is
2.4kbps, but every symbol is treated as though the two-times shorter one is doubled
(symbol repetition), so that the input rate of the subsequent interleaver is 4.8 kbps. The
interleaver serves to decorrelate error bursts, thereby improving the error correction
capability of the convolutional code against long fading drops of signal strength or other
correlated degradations (see Section 9.5). Interleaving covers one frame of 128 code
symbols (26.67ms) and uses 16 x 8 matrix memory. The encoded stream is written
column-wise into it and then read out according to the standard-defined pattern.

The Walsh sequence that is the 33rd row of the Hadamard matrix of size 64 physically
channelizes the synchronization data. Figure 11.1b shows again primary forming of the
binary {0, 1} prototype W3,, which is simply a meander where 32 zero symbols are
followed by 32 ones. The technique of DS spreading illustrated by the figure is a
conventional one, based on the one-to-one correspondence between multiplication
and modulo 2 summation within real {£1} and logical {0, 1} alphabets, respectively
(see Section 7.5.2). Accordingly {0, 1} symbols of the encoded and interleaved stream
are symbol-wise modulo 2 added with W3, and the resulting stream is then mapped to
the {£1} alphabet.

11.3.3.3 Paging channels

There are up to seven paging channels intended to notify a subscriber about calls coming
from the network, to answer users’ requests initiating calls and to transmit other access-
related information. The raw data is divided into slots of duration 80 ms consisting of
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Figure 11.2 Simplified structure of a paging channel

four 20 ms frames. Frames or their parts enter message capsules, each containing up to
1184 bits, including 30 CRC symbols. There are two possible rates of paging data: 9.6 or
4.8 kbps. Figure 11.2 presents a simplified structure of a paging channel. Its first unit is a
convolutional encoder of rate 1/2 and constraint length 9. Similarly to the synchroniza-
tion channel, tail bits are not introduced so there is no resetting of coder and decoder to
the zero state at the end of frame. At the input rate 4.8 kbps the encoded stream rate is
9.6 kbps, but every symbol is treated as a doubled shorter one (symbol repetition), so
that regardless of the raw data rate the encoded stream is of rate 19.2kbps. The
interleaver operates within 20 ms frames employing 24 x 16 matrix memory where
encoded symbols are written column-wise. The order of reading from the memory is
set up by the standard.

The next operation over the encoded and interleaved stream is encryption, which is
realized as scrambling, i.e. modulo 2 symbol-wise sum with a psecudorandom binary
sequence. The latter is produced by decimation of the user-specific offset replica of the
long code with index 64, i.e. taking every 64th symbol. In this way, the rate 1.2288 Mcps
of the long code is divided 64 times, coming to 1228.8/64 = 19.2 kcps. As such, the
encryption is specific for any user, preventing an unauthorized interceptor from moni-
toring the access data sent by the BS.

The Walsh functions with numbers 1 to 7 (second to eighth rows of a Hadamard
matrix) are used for the channelization of paging channels. The primary paging channel
formed by W is always available, while the rest may either be not activated or used as
traffic channels.

11.3.3.4 Traffic channels

The channels considered up to this point perform service functions necessary to start
and maintain conveying basic messages to the user. The traffic channels are responsible
for delivery of basic information: digitized voice, computer or multimedia data etc. To
be specific, let us limit ourselves to speech transmission. The preliminary operation,
then, is encoding of speech run by the unit called vocoder (voice coder). Leaving aside
discussion of the rather complex principles of this device, just note that several types of
vocoder are presently used in IS-95 equipment outputting speech data stream with
nominal rates 8.6 or 13.3kbps. The nominal rate corresponds to the highest speech



350 Spread Spectrum and CDMA

activity (when a speaker is talking unceasingly), while there are three smaller rates for
lower activity. For the upper rate 8.6 kbps they are 4.0 kbps, 2.0 kbps and 0.8 kbps. The
vocoder constantly traces the energy of analog speech over 20 ms frames and compares
it with three adaptive thresholds to set an appropriate rate of digitized output. Rate
reduction at periods of low speech activity is accompanied by proportional reduction of
emitted signal power, so that the energy per bit remains constant. In its turn lower
power means reduced level of MAI to other users inside* and outside the cell, and
eventually a greater number of users served by BS (see Section 4.6). The digitized speech
stream is packed into 20 ms frames containing along with the information bits also CRC
symbols and 8 tail bits resetting the convolutional encoder to zero. As a result, the set of
rates of the 8.6 kbps nominal rate transforms at the channel input into the set RCI of
‘raw’ rates 9.6, 4.8, 2.4 and 1.2 kbps.*

Let us turn to the block-diagram of a traffic channel in Figure 11.3. Input data at one
of the four rates above arrives at the convolutional encoder of rate 1/2 and constraint
length 9. Regardless of the input rate, the output rate due to symbol repetition is always
19.2 kbps, e.g. the stream of rate 1.2 kbps is encoded into one of true rate 2.4 kbps, but in
this output stream each symbol is treated as 8 consecutive 8 times shorter symbols. The
interleaver operates over 20ms (384 code bits) permuting symbols of the codestream
according to the pattern defined by the specification. The interleaver output is then
scrambled in the same way as in paging channels to provide privacy of a transmitted
message.

In Sections 4.5 and 4.6 we stated that powers of MS signals should be effectively
controlled to overcome the near—far problem and maintain MAI at the BS site below the
destructive level. A closed power control loop is one of the arrangements running this
task in IS-95. A BS monitors permanently the intensity of each of the received MS
signals and sends a command ordering the MS to either increase or decrease its emitted
power. The command is just a power control bit whose values zero and one dictate
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Figure 11.3 Simplified structure of IS-95 forward traffic channel

2 Despite the forward channel being synchronous and not oversaturated, it is in practice not free of MAL:
mutual multipath delays make different Walsh sequences non-orthogonal.

3 Apart from RCI1, 1S-95 documents also establish the set of raw rates RC2 for the nominal rate 13.3 kbps:
14.4,7.2, 3.6 and 1.8 kbps; however, the codestream after the convolutional encoder again has the same rate of
28.8 kbps due to puncturing (see Section 9.3.1).
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increase or reduction of MS power, respectively. To insert the commands into the
forward link signal every 20 ms frame after the interleaver is divided into 16 power
control groups (PCG), each spanning 1.25ms or 19.2-103 x 1.25-1073 =24 code
symbols of the 19.2 kbps codestream. In every PCG a single power control bit overwrites
two code symbols. The MS receiver, knowing the positions of overwritten symbols (i.e.
power control bits), excludes them from the decoding procedure as having nothing to do
with the message contents. This is entirely equivalent to replacing an original convolu-
tional code by a punctured one (see Section 9.3), and its negative effect on the code
correction capability is believed to be partly mitigated by random positioning of the
power control bits within PCG. The pseudorandom sequence at the output of the first
decimator of Figure 11.3 has the same rate as the codestream, i.e. 19.2 keps. During one
1.25ms PCG there are 24 chips of this sequence. The last four of them are read as a
binary number with the 24th chip giving the most significant bit. This number, ranging
from 0 to 15, is used as a position number of the power control bit in the next but one
group after the current one. Thus, the power control bit may take randomly any
position out of the first 16 in every PCG. In Figure 11.3 the units implementing
positioning and inserting power control bits are denoted as ‘PC bit positioning’ and
‘Multiplexer’.

11.3.3.5 Forward link modulation

Figure 11.4 presents the block-diagram of the forward link modulator. Output voltages
of all physical channels of BS are first weighted by appropriate gains to realize forward
link power control. Every MS periodically informs the BS about the reliability of data
received, and the BS properly adjusts the power level of the signal in the traffic channel
assigned to this specific MS to maintain the data reception quality above the predeter-
mined threshold. The weighted channel signals are then summed in the adder and fed in
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Figure 11.4 1S-95 forward link modulator
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parallel to the in-phase and quadrature branches of the modulator to be multiplied by
the binary PN-I, PN-Q codes (see Section 11.3.2) and shaped in the frequency domain
by the baseband filters. The multiplication of the in-phase and quadrature signals by
cosine and sine CW components of frequency f;, with their subsequent summation
performs up-conversion of the BS signal and finishes the modulation process. As is
seen, the input baseband signal in both branches is the same. As such, it is a sum of
multiple binary voltages, i.e. is multilevel real. Assume for a while that there is only a
single physical baseband channel fed immediately to the modulator branches without
summation with other channels. We may postulate that each physical channel is pro-
cessed this way, i.e. there are as many modulator branch pairs as channels and the
outputs of all these parallel modulators are added up coherently. Since the scheme of
Figure 11.4 is linear, and hence the superposition principle is valid, its output effect is
identical to that of the hypothetical scheme above, i.e. with individually modulated
channels. That is why we may say that in the forward link of IS-95 DS spreading is used
where the binary datastream (channelized by a Walsh function) modulates the QPSK
spreading code (see Section 7.1). Since the rate of the codestream at the modulator input
is 19.2 kbps, each symbol has duration covering 64 short code chips. Hence, the forward
link spreading factor is 64.

It is worth noting that the long code plays no role in DS spreading of the forward link
signal, taking part only in data encryption and power control bit positioning. It is often
said that forward link spreading is done by both Walsh codes and short PN-codes. Yet,
conceptually classifying Walsh functions as channelizing and PN-codes as spreading
may look more convenient.

11.3.3.6 MS processing of forward link signal

Signal processing in the MS receiver rests on the classic procedures discussed in depth in
the previous chapters. On successful acquisition of a pilot signal, the receiver DLL pulls
in and continuously tracks the short code of the contacted BS. The local replica of the
short code produced by DLL serves for despreading the received signal. The outcome of
the despread pilot channel is a ‘pure’ CW carrier down-converted to appropriate
intermediate frequency. A phase-locked loop tunes the local crystal oscillator to be
coherent with this CW signal, providing thereby the reference for coherent data demod-
ulation. After demodulation and deinterleaving the data transmitted over synchron-
ization, paging and traffic channels are separated from each other in correlators using
Walsh-sequence references, decoded by the Viterbi algorithm and used according to
their destination. For example, a digital-to-analog converter transforms speech data of
the traffic channel into voltage, which becomes audible with the aid of an earphone.
Every MS receiver contains several (four or more) parallel channels capable of
searching and tracking the pilot signal. One goal of it is arranging the RAKE receiver,
which realizes the multipath diversity benefit of spread spectrum (see Section 3.7).
Typically at least three such channels are used to implement RAKE fingers. Another
procedure requiring autonomous pilot signal channels in the MS receiver is handover.
A reserve correlator (or set of them) performs permanent scanning of the time domain,
trying to determine if signals of other BSs are present, possibly more intense and
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preferable for contact. In the latter case the network may order MS switching to another
BS, which is done easily, since the receiver is already tracking its signal (soft handover).

11.3.4 Reverse link of 1S-95

According to the logical content of the data transmitted over the reverse channel every
MS operates on one of two types of channels:

o traffic channel
e access channel.

11.3.4.1 Reverse link traffic channel

Figure 11.5 presents a simplified structure of the reverse traffic channel. The MS-
transmitted bit stream (digitized speech from a vocoder, computer data etc.) with
inserted CRC symbols is divided into 20 ms frames, where 8 tail bits are then inserted
for zero-resetting of a convolutional encoder at the start of every encoded frame. As a
result the nominal rate of data at the encoder input is 9.6 kbps, but for reduced voice
activity three lower rates (4.8, 2.4 and 1.2 kbps) are also employed, in the same way as in
the forward link. Due to the asynchronous nature of the reverse link, MAI—unlike in
the forward link—would exist even in the hypothetical absence of multipath effects (see
footnote 2). This qualitatively justifies the greater strain interference condition of the
IS-95 reverse link, explaining why it exploits a convolutional code with higher error
correction capability in combination with subsequent 64-ary orthogonal modulation.
Since increasing the constraint length v, would entail undesirable codec complications,
its accepted value is the same as in the forward link (v. = 9), reduction of the code rate
to 1/3 being a payment for better distance properties. With such a code rate the output
codestream rate is 28.8 kbps independently of input bit stream rate: the symbol repeti-
tion explained earlier for a forward channel is administered in the reverse link as well.
An individual 20 ms frame of a codestream (576 bits) is divided into 16 power control
groups of 36 bits (1.25 ms) each. An interleaver operating over the frame uses a 32 x 18
matrix, where the codestream is written column-wise. The reading runs row-wise, every
pair of odd and the next even rows forming one PCG. However, consecutive pairs of
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Figure 11.5 Simplified structure of 1S-95 reverse traffic channel
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rows are read according to a pattern providing adjacency of PCG repeating each other
(due to encoded symbol repetition) whenever the raw datastream rates are smaller than
9.6 kbps (i.e. 4.8, 2.4 and 1.2kbps). For example, when the raw rate is 4.8 kbps every
even PCG contains repetition of the same interleaved code symbols as the previous; for
the datastream rate 2.4 kbps the groups with numbers 4i + 2,4i + 3,4i + 4 are replicas
of the group number 47 + 1, etc. Such an order is convenient for further lowering of the
average transmitted power proportionally to the rate reduction, which is realized in the
reverse link slightly differently as compared to the forward link (see below).

The codestream from the interleaver is fed to the 64-ary orthogonal modulator,
meaning that every 6-symbol block treated as a binary 6-digit number selects one of
64 orthogonal signals (a Walsh function of this number). This gives an extra coding gain
(up to three times asymptotically; see Section 2.6) above that of convolutional coding.
Since every 6 input binary symbols are now replaced by 64 binary symbols, the stream of
chips at the orthogonal modulator output becomes 64/6 = 32/3 times faster
(307.2 kcps). Let us stress that Walsh functions in the reverse link bear no channelization
functions and only implement spread spectrum orthogonal coding for data transmis-
sion, as discussed in Section 2.7.3.

The next step in forming a traffic channel is spreading, i.e. modulo 2 summation of
the binary symbol stream after the orthogonal modulator with the offset long-code
sequence. Since the long code is a chip stream with rate 1.2288 Mcps, there are 4 long-
code chips per Walsh symbol or 256 long-code chips per Walsh signal at the orthogonal
modulator output. The BS receiver after despreading uses a 64-channel correlator bank,
each channel being tuned to one of the Walsh signals, and decides in favour of the Walsh
signal referencing the correlator with the strongest response. As such, a processing
interval covers the whole Walsh function duration, i.e. 256 long-code chips, and the
spreading factor of the reverse link appears to be 256. A long code is unique, strictly
specified by the standard, and it is user-specific masks (time-offsets of the code) that
secure CDMA separation of different users. Thus, we encounter here the strategy of
asynchronous CDMA discussed in Section 7.4. Of course, these offsets should be
properly assigned to have no risk of synchronous arrival at the BS of signals from
two MSs migrating freely over the whole coverage zone. The value of offset is a current
MS identity rendered to it by the network similarly to the channel carrier in FDMA. In
parallel with the CDMA channelization, the user-specific mask provides the encryption
(scrambling) of the stream after orthogonal modulator. Due to the enormous length of
the long code, it is not an easy task for an unauthorized interceptor, who does not know
the user’s mask, to synchronize a local long-code generator to the intercepted signal and
despread (thereby descramble and decrypt) the data.

The operation of mapping logical {0, 1} symbols onto the real modulation alphabet
{£1} is the same as before and does not require any special comment.

One of the primary requirements for MS handset is a long enough battery lifetime.
From this angle a linear power amplifier consuming higher average power is less
attractive than a nonlinear (operating in a keying mode) one. That is the reason why
in the MS transmitter average power reduction is achieved not by lowering an instant
power, but alternatively by transmitting only one PCG of all those that replicate each
other. For example, with a raw rate 2.4 kbps there are quadruplets of identical PCGs
and only one of them is transmitted, while the transmitter is cut off during the three
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Figure 11.6 Example MS transmission pattern for the raw rate 4.8 kbps

others. Certainly, this makes MS emission discontinuous. Randomization of the pos-
itions of discarded PCGs (data burst randomization) enables better averaging of dis-
continuous MAI at the BS. The pseudorandom pattern of gating off the PCG inside any
frame is determined by the last 14 chips of a user’s mask, i.e. offset long-code replica, at
the end of the previous frame. The rule defined in the specification for every particular
raw rate recalculates values of these chips (as binary digits) into the positions of erased
PCGs. Figure 11.6, where identical numbers mark replicated PCGs, and shaded and
dashed rectangles correspond to transmitted and erased PCGs, shows an example
transmission pattern for raw rate 4.8 kbps. We may treat the sequence after the data
burst randomizer as ternary with symbols {£1} and zero corresponding to active and
pausing transmitter, respectively.

11.3.4.2 Access channel

MS uses an access channel when responding to a notification about an incoming call in
the idle state and when it either needs to register on the network or initiate a call. The
procedures of framing, convolutional encoding, orthogonal modulation, interleaving
and long-code spreading in the access channel are basically similar to those of the
reverse traffic channel. Of course, no voice data is transmitted through this channel,
so no rate/power control according to voice activity is performed. One of the specific
features of the access channel relates to initiating access by MS. Not knowing precisely
the propagation conditions in the reverse link, the MS starts by sending probe signals of
low strength, gradually increasing the signal level with every next attempt until it obtains
the BS confirmation that the connection is established. Probe signals are sent in a burst
mode with randomized intervals to reduce the probability of colliding requests from
several users, because it is not impossible that at the access stage different MSs have the
same long code masks.

11.3.4.3 Reverse link modulation

MS can never use both traffic and access channels simultaneously, therefore there is
no need for channel signal summation at the modulator input as there was in the forward
channel. Traffic or access channel output is immediately fed in parallel into in-phase/
quadrature branches, differing from those of Figure 11.4 in the following details. First,
offsetting short codes PN-1 and PN-2 to identify BS is now needless (every mobile has its
own unique identity—Ilong code mask—all over the coverage zone), and even inconvenient
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for simultaneous reception of the same MS signal by several BSs during a soft handover.
Thus, all MSs use zero offset of the short code. Second, there is a half-chip delay inserted
into a quadrature branch after a multiplier by PN-Q. This is done to convert QPSK into its
version called offset QPSK (O-QPSK). The latter is believed to be preferable for battery
lifetime. The conventional QPSK modulator in Figure 11.4 may be thought of as two
BPSK modulators, operating independently with cosine and sine CW carriers. When binary
symbols in both branches change into the opposite simultaneously, the phase of the QPSK
signal hops by 180°, and the transmitter power amplifier should have linear dynamic range
around the doubled signal amplitude. In O-QPSK, due to half-chip time-offset of symbol
bounds, when one of two modulating binary streams changes, the other remains constant.
Therefore, the maximal hop of the resulting signal phase is only 90°, softening the demand
on the amplifier linear dynamic range and helping to make the battery lifetime longer.

11.3.5 Evolution of air interface cdmaOne to cdma2000

One of the main stimuli for promoting 3G standards was the extension of functionality
of a mobile handset from just a telephone device to a terminal capable of high-speed
data exchange with the network, receiving and outputting multimedia information,
access to Internet etc. All of these novelties demand much higher transmission rates as
compared to 2G systems, and the ultimate rate associated with the 3G philosophy is
2 Mbps. Such a dramatic rate increase with no compromise of quality of service and
number of users served calls for a broader system bandwidth. It is characteristic of
c¢dma2000 projects that, unlike the UMTS concept (see Section 11.4), they consider
IS-95 as the starting point and allow for backward compatibility with it. Of all the
technologies united by the common name cdma2000, the one based on the MC-DS-
CDMA principle (see Section 10.2.1) of the forward link looks most likely to be finally
adopted. We cannot touch upon the details of this proposal here (whose extensive
description is the subject of [69]), due to their complexity and possibly non-final state,
so we give only a very short survey of the main ideas below.

With three carriers (in future this number may increase) the cdma2000 forward link
just repeats three times the spectrum of IS-95 occupying total bandwidth of about
3.75MHz and using in each of three 1.25MHz subbands spreading and modulation
techniques somewhat different from those of IS-95. Unlike 1S-95, where BPSK data
modulates the QPSK spreading sequence, in cdma2000 both data and spreading code
are of QPSK type. This allows doubling the duration of the codestream symbols, given
the data rate, thereby increasing by two times (up to 128) the spreading factor per
subband within the same chip rate. Certainly, greater spreading factor means doubled
number of forward physical channels, and consequently potentially greater number of
users served. But even more importantly, the number of parallel channels granted by the
network to the same user may permit transmission of data at the number-of-channel
times higher total rate. This multicode mode inherited from the IS-95B specification is
one of the main resources for approaching the rates pre-assigned by the 3G concept.

Another advancement of the cdma2000 forward link is employing transmit diversity,
in particular a technique close to that discussed in Section 10.3.5. Since signals from
different transmit antennas propagate along different paths, some extra pilot channels
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above the one of 1S-95 are arranged, transmitting antenna-specific pilot signals from
two BS antennas involved in diversity. This enables the MS to separate pilots of
different antennas and have strictly synchronized references for the diversity signals to
demodulate, decode and properly combine diversity branches.

More complex organization of cdma2000 requires stronger systematization of logical
forward channels. Instead of only four in IS-95, the hierarchy of logical channels in
cdma2000 contains 10 only on the first layer, adding common control channel, common
power control channel, broadcast control channel, quick paging channels etc. As for the
traffic channels, they include, among others, the fundamental ones (primarily used) and
supplemental channels involved in multicode transmission when very high rates not
achievable with only fundamental channels are on request. The supplemental channels
may use either convolutional or turbo codes (see Section 9.4).

The reverse link of cdma2000 does not use the MC-DS-CDMA technique, being
implemented as conventional DS CDMA with three times broader bandwidth
(3.75MHz). This corresponds to three times higher chip rate (3.6864 Mcps) of the long
spreading code. With such high DS spreading rate, a number of solutions of IS-95 were
revised and replaced by more relevant ones. First of all, a convolutional encoding rate
1/4 is used instead of 1/3, meaning that the raw data rate, say 9.6 kbps, after encoding
becomes 38.4 kbps. Using QPSK data modulation and spreading such a codestream by a
long code gives a spreading factor 2 x (3.6864/38.4) x 10° = 192, which is not a critical
loss as compared to 256 in IS-95. At the same time, the reduction of rate of a convolu-
tional code of constraint length 9 to 1/4 returns some extra (non-asymptotic) coding
gain. On this ground the designers decided to reject the orthogonal 64-ary modulation
and bring the reverse traffic channel structure closer to that of the forward link.

Another distinction is the long list of logical channels, including the reverse pilot
channel, which now becomes obligatory, since in the absence of orthogonal modulation
the BS should have a local coherent reference to demodulate the QPSK data of MS.
There are other new logical channels, some of them running simultaneously. Being
channelized by the Walsh signals, they are then linearly summed, meaning that the
transmitter power amplifier should be linear so involving O-QPSK is needless. Thus, an
ordinary QPSK data modulator is used, where the QPSK-mapped codestream is first
multiplied by the QPSK spreading code and then the real and imaginary parts of the
product modulate the cosine and sine CW carrier components, as explained in Section 7.1.
Note that, similarly to the forward link, reverse supplemental channels may support a
reverse fundamental (traffic) channel (one per MS), providing multicode transmission at
the high rates unattainable with only fundamental channels. The supplemental channels
may again use either convolutional or turbo codes.

11.4 Air interface UMTS

11.4.1 Preliminaries

The UMTS (acronym of Universal Mobile Telecommunication System) is a 3G wide-
band CDMA standard whose development was pioneered by the European telecom-
munication community. Currently UMTS, along with cdma2000, enters the so-called
IMT-2000 family, i.c. the list of standards declared by the International Telecommunication
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Union (ITU) to be basic for 3G systems. There are two versions of UMTS: frequency
division duplex (FDD) and time division duplex (TDD). As is immediately seen from
the names, these systems differ from each other in the method of separation between
downlink and uplink. In FDD-UMTS downlink and uplink occupy non-overlapping
frequency bands, while in TDD-UMTS they employ different time slots. For brevity we
limit the discussion below to only FDD-UMTS, keeping in mind that many solutions
adopted in it are common to both systems.

International regulatory documents allocate for FDD-UMTS in Europe frequency
bands 1920-1980 MHz (uplink) and 2110-2170 MHz (downlink) with a limitation of
5SMHz on the link bandwidth. DS spreading is a fundamental technique securing
separation of physical channels, in particular multiple access (DS CDMA). The stand-
ard sets a universal and constant chip rate 3.84 Mcps in full agreement with the
bandwidth limitation. Like cdma2000, UMTS is a system in which the data transmission
rate may vary in a very wide range. As a consequence of this, along with chip rate
invariance, the spreading factor changes with transmission rate.

In what follows we concentrate again on the physical layer of the system, i.e. solutions
concerning spreading, channelization and modulation. Note that BSs of UMTS do not
rely upon GPS support and operate with their own autonomous non-synchronized
clocks. Although this architecture saves on BS equipment costs, it does, however, make
cell search and handover procedures more complicated and is responsible for many
distinctions between the physical layers of UMTS and cdma2000.

Similarly to Section 11.3, we can hardly present here anything more than a very short
sketch, but many recently published books dedicated to the UMTS standard
[92,104,114,115,120-122] will help the interested reader to expand his/her knowledge
about this system, which is likely to become dominant among mobile telecommunica-
tions in the near future.

11.4.2 Types of UMTS channels

According to the terminology of the UMTS specifications there are logical, transport
and physical channels. On the layers higher than physical the data is distributed between
the logical channels on the basis of information content, but before arriving at the
physical layer it is restructured into the transport channels. The criterion to distinguish
transport channels is mode and format of data representation, while physical channels
(which are just signals bearing messages), as in any CDMA system, are distinguished by
their specific codes. The physical layer consists of two sublayers. The transmitted data
arrives at the first physical sublayer from the upper layers packed into transport
channels according to information content. The first sublayer includes among other
things attachment of CRC for data block protection, channel coding and interleaving.
Channel coding is either convolutional (constraint length 9, rates 1/2 or 1/3) or turbo
coding (constituent encoders of memory 3, rate 1/3). For very high data rate uncoded
transmission is possible, too. The second sublayer, i.e. radio link, covers mapping the
transport channels to the physical ones (signals), and transmitting signals over
the propagation medium. The signal received by MS (downlink) or BS (uplink) then
undergoes all necessary reciprocal operations of the two sublayers (demodulation,
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deinterleaving, decoding etc.), reverse mapping when necessary, and passing the data
over to the higher layers.

Another classification applicable to both transport and physical channels discrim-
inates between common and dedicated ones. The first of them contain data relating to the
whole system and commonly used by all users, whereas the second serve to establish a
connection between BS and individual MS.

The time structure of all channels is strictly predetermined by the standard. All of
them consist of frames of duration 10ms (38400 chips) and every frame is in its turn
divided into 15 slots of duration 666.66 ... us (2560 chips).

11.4.3 Dedicated physical uplink channels

A dedicated physical channel is the one which the network grants to the MS to utilize
exclusively, i.e. two mobiles within the same cell can never use the same dedicated
channel. There are two types of dedicated uplink channels: dedicated physical data
channel (DPDCH)* and dedicated physical control channel (DPCCH), whose names
are consistent with their functionalities. The DPCCH transmits to the BS service
information: the pilot signal necessary to estimate propagation parameters and syn-
chronize BS coherent reference, message about the format of data in DPDCH, feedback
information used in handoff and power control commands. There is always only one
DPCCH per MS, and the transmitted user’s data arrives at the physical layer packed
into one dedicated transport channel per MS. But this unique transport channel may be
mapped to several (up to six) DPDCH, if the necessary rate surpasses the maximum
provided by a single DPDCH.

Multiplexing of dedicated channels is performed as follows (see Figure 11.7). The
DPCCH is always transmitted through a quadrature branch of the QPSK modulator,
while the first of the DPDCH is fed into the in-phase branch. The rest of the DPDCH, if
any, are distributed between branches as equally as possible. Thus, despite the QPSK
modulator involvement data modulation in the uplink is BPSK. The transmission rate
over the DPCCH is always constant, equal to 15 kbps or 10 bits per slot. Then each bit
occupies 2560/10 = 256 chips and the spreading factor of DPCCH is always 256. The
spreading factor of DPDCH, on the other hand, is variable depending on the necessary
data rate and may change from 256 (minimal rate) to 4 (maximal rate). Thus the
minimal data transmission rate is 15 kbps, while the maximal per DPDCH is 64 times
higher, i.e. 960 kbps. Using up to six parallel DPDCH in the multicode transmission
mode described in the previous section allows in principle a maximal rate of 5760 kbps.
Certainly, the so-called gross rate (i.e. of codestream after a channel encoder) is meant,
the raw datastream rate being lower proportionally to the channel code rate.

Every uplink physical channel has its specific channelization code multiplied with
encoded data. Figure 11.7 presents a scenario where all DPDCH are active, using six
different channelization codes CC;—CC¢ with designation CC, reserved for the channel-
ization code of DPCCH. After multiplication by the channelization code all physical

4 The names and abbreviations of the UMTS channels reproduce exactly those of the UMTS documents.
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Figure 11.7 Multiplexing of dedicated uplink channels

channels are weighted by their gains, implementing the reverse link power control.
Actually, only two different gains are involved: whatever the number of DPDCH, all
of them have the same gain G, while the gain of DPCCH is G.. The maximal gain value
is one, zero gain cuts off a channel, and the step of variations of gain value is 1/15.

11.4.4 Common physical uplink channels

Common physical channels represent a resource that is at the common disposal of all
mobiles. There are two types of common uplink channels: random access channel
(RACH) and common packet channel (CPCH), the terms being used for both the
transport and corresponding physical channels. The MS utilizes RACH to initiate a
contact (e.g. call) with the network and to transmit short packet messages, CPCH being
the main resource for MS packet transmission.

Physical RACH (PRACH) contains a preamble of 4096 chips, which is 16-chip MS
identifier repeated 256 times. The MS can start transmission over PRACH at the
beginning of any of 15 access slots occupying together two frames, i.e. 5120 chips or
20 ms. The diagram of access slots is set up in the BS transmission format using a special
transport downlink channel (broadcasting channel, BCH). At the initial stage the MS has
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no reliable knowledge about signal attenuation in the uplink, and the first transmission
of preamble goes at low power. As long as no message comes from the BS confirming
connection, the MS randomly selects new access slots and makes new attempts, each
time increasing the signal power. After receiving BS confirmation, the MS transmits the
message itself covering one or two frames (10 or 20ms). There is no closed power
control loop in PRACH, since the connection sessions on it are quite short.

The structures of the physical CPCH (PCPCH) and PRACH are in general similar;
however, the message segment of the PCPCH may occupy a larger number of frames
and the preamble segment is followed by one more part: the collision detection pre-
amble, which helps to recognize simultaneous attempts of several MSs to use PCPCH.
Due to the longer duration of PCPCH packets the presence of a closed power control
loop in it appears to be reasonable in contrast to PRACH.

In the same way as in the dedicated channels, quadrature multiplexing is used in the
common channels to combine information and service components of transmitted data.
Separation of common and dedicated physical channels is performed by channelization
codes, which are considered in the next subsection.

11.4.5 Uplink channelization codes

As stated above, an individual MS uses several types of channels to be separated in the
BS receiver. Since the same clock controls all the physical channels of the MS, synchron-
ous code division is a good option to arrange separation between physical channels
(multiple DPDCH, DPCCH, PRACH, PCPCH). Note that we are now discussing only
the separation of channels of an isolated MS, signals of different mobiles remaining
separated by asynchronous CDMA, as in cdmaOne and ¢cdma2000.

In the UMTS documents the channelization coding format is described by the binary
tree establishing an iteration procedure. At every iteration any word of the preceding
iteration generates two new words of double length by appending either itself or its
negation. Let ¢; be some code vector obtained at the kth iteration. Then two code
vectors of double dimension ¢, = (¢, ¢x) and cj(H = (¢x, —¢y) are its descendants at
the next iteration. In this way, starting with a trivial word (1) of length one leads after k&
iterations to 2¥ channelization codewords of length N = 2F (Figure 11.8 shows this for
the case k = 3). One can easily see that this algorithm differs from the Sylvester rule of
constructing the Hadamard matrix (see Section 2.7.3) only in reordering the resulting
matrix rows, so that the codewords obtained are nothing but Walsh functions. Never-
theless they appear in the UMTS specifications under a special name, orthogonal
variable spreading factor (OVSF) codes.

The uplink OVSF tree is built using k = 8 iterations, so that codewords have maximal
length N = 256 chips. The word of this length consisting of all ones is allocated to the
dedicated control channel DPCCH, whereby a subsequent scrambling secures DPCCH
spreading factor 256, mentioned in Section 11.4.3. Choice of channelization code of the
same length for DPDCH (spreading factor 256) allows transmitting data at the rate
15kbps. If a greater rate is on demand, the data symbol becomes shorter, i.e. the
spreading factor drops (the chip rate never changes, remaining 3.84 Mcps!). Appropriate
DPDCH channelization words are then taken from the intermediate (kth, SF = 2¥ being
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Figure 11.8 Tree of OVSF codes of length 8

the required spreading factor) iteration of the OVSF code tree. If a necessary rate
is attainable within a single DPDCH its channelization word number is fixed by the
specification as SF/4 = 25-2_ counting top-down on the tree and numbering the upper-
most word by zero. Such a choice always preserves orthogonality between DPDCH and
DPCCH independently of DPDCH spreading factor. When a single DPDCH (with
spreading factor 4) cannot provide the necessary data rate, the multicode transmission
mode involves several DPDCH, all having always the same minimum spreading factor
4. There are three codewords of length 4 orthogonal to each other and to the word of
DPCCH, so, allowing for the chance of using the same word for two DPDCH in
quadrature multiplexing (Figure 11.7), up to 6 multicode DPDCH may be arranged.

The technique of allocation of codewords to PRACH and PCPCH set up by the
specification also provides their orthogonality to the dedicated channels over the whole
range of DPDCH data rates.

11.4.6 Uplink scrambling

The final step in forming the MS signal is its DS spreading by a user-specific signature to
realize asynchronous CDMA separation of signals of different MSs in the BS receiver.
According to the UMTS thesaurus, this operation, as well as a similar operation in the
downlink, is called scrambling. This usage of the term is slightly different to that in the
cdmaOne and cdma2000 documents (see Sections 11.3.3.3 and 11.3.3.4). There are two
types of uplink scrambling codes predetermined by the standard: either long or short
codes apply to scramble dedicated channels.

The Gold sequences (see Section 7.5.2) of length L =2%° — 1 truncated to one
frame period, i.e. 38400 chips, serve to build up the long scrambling codes. The
LFSR generators with feedback polynomials fj(x) = x> + x>+ 1 and f>(x) = x>+
x3 4+ x> + x + 1 form two m-sequences, of which the second may also be obtained by
decimation of the first with the index relevant for Gold codes. The modulo 2 addition of
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the offset second m-sequence to the first gives a Gold sequence which is then truncated
and mapped to the {£1} alphabet. The ‘pure’ truncated Gold sequence {c¢;} determines
the real component of the MS QPSK signature. To obtain the imaginary part the
original (before truncation) Gold sequence is first offset by 16 777 232 chips and then
truncated and mapped to produce the {£1} sequence {c}}. After this, the negative of
every even element of the latter sequence replaces the following odd element and the
result is chip-wise multiplied with {¢;}. The last operation halves the number of elements
in the resulting QPSK sequence whose polarities are opposite to the preceding. Indeed,
the equation describing a QPSK signature a; thus obtained is:

a; = cli) +j(~1)'e(i)e' 21i/2)), (1L.1)

where ¢(i) and ¢/(i) are just more convenient designations for the elements ¢; and ¢;. One
can observe now that in passing from an even position i = 2/ to the next odd i = 2/ + 1
the real and imaginary part cannot change simultaneously, meaning that maximal phase
jumps are only £90°, never 180°, so a chip polarity may change into the opposite only
during transitions from odd to even chips. Reduced frequency of the opposite transi-
tions is typically desirable for battery lifetime, since power amplifier during them
dissipates higher energy.

The final step of QPSK scrambling consists in multiplication of the MS multiplexed
signal taken from the branches of the scheme of Figure 11.7 with scrambling sequence.
This operation, which is performed by an ordinary QPSK modulator, was discussed at
length in Section 7.1.2.

A scrambling sequence is precisely synchronized to the MS clock beginning in any
frame from the same symbol (chip).

Note that the key advantage of Gold codes—minimax periodic correlation proper-
ties—cannot justify their choice for uplink scrambling, because truncation corrupts
correlations drastically. An alternative reasoning is ease of generation of many (no
fewer than 2> + 1) pseudorandom sequences.

Short scrambling sequences have length 256 and are planned for employment when a
BS receiver is capable of running multiuser algorithms (see Section 10.1). In the case of
asynchronous CDMA, the complexity of this type of receiver typically grows with the
length of spreading code. The rule of forming short scrambling codes set by the
specification includes generating a linear recurrent quaternary sequence of length 255,
modulo 4 summation of it with two binary recurrent sequences of lengths 51 and 85,
extension of the resulting sequence by one element up to length 256, mapping quater-
nary symbols onto the QPSK alphabet, and transformation of the obtained complex
sequence by rule (11.1).

11.4.7 Mapping downlink transport channels to physical channels

Information conveyed by the network to a specific MS at the transport layer is organized
as a single dedicated channel, which is then mapped to two downlink physical channels
similar to those in the uplink: data (DPDCH) and control (DPCCH) dedicated channels.

The list of downlink common transport channels is much wider compared to the uplink.
It contains, specifically, the already mentioned broadcast channel BCH transmitting
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parameters of the network or cell used by all MS, the forward access channel (FACH)
utilized by the BS to send command data to the MS with known location, and the
paging channel (PCH), over which the BS sends commands to the MS with unknown
location, etc. At the physical layer the primary common control physical channel
(P-CCPCH) transmits BCH data, FACH is mapped to the secondary common control
physical channel (S-CCPCH), and transmission of PCH is performed again partly by
S-CCPCH and partly by the synchronization channel (SCH). There is also a common
pilot channel (CPICH) transmitting data-unmodulated signal to be used by the receiver
for estimating the channel parameters. A complete scheme of correspondence between
the downlink transport and physical channels set up by the specification may be found
in [92,121].

11.4.8 Downlink physical channels format

The mechanism of multiplexing the downlink dedicated data and control channels
DPDCH and DPCCH is different from that of the uplink: every slot is split into parts
and every part is allocated either to DPDCH or to DPCCH. Under this arrangement
the BS transmitter operates at times in a discontinuous manner, due to the pauses in
the datastream during periods of low voice activity. The discontinuous emission being
used in the MS transmitter might cause interference, badly affecting nearby electronic
devices (e.g. hearing aid). This phenomenon has been repeatedly reported for GSM
handsets. However, as for the BS, its discontinuous radiation cannot be that harmful,
since the devices mentioned above are hardly likely to be close enough to the BS
antenna.

Another distinction of the downlink physical channel format is QPSK (unlike BPSK
in uplink) data modulation. First, the demultiplexer (DM UX) splits the bit stream after
the first physical sublayer (channel encoding, interleaving etc.) into two streams, bearing
even and odd original bits, respectively. Both streams mapped to the {41} alphabet are
multiplied by a binary channelization code (CC), giving real and imaginary parts of a
complex channelized data signal, as Figure 11.9 shows. The final step is multiplication
of this QPSK data signal with the QPSK spreading (scrambling) code and QPSK carrier
modulation, performed the same way as in the uplink.

Even bits ( > Re
—

Data -
— DMUX
Im
> X
QOdd bits

CcC

Figure 11.9 Data demultiplexing and channelization in UMTS uplink
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11.4.9 Downlink channelization codes

Time multiplexing of data and control channels discussed in the previous subsection
means that only one dedicated physical channel (DPCH) is necessary to transmit both
these information streams. When a single such channel meets the requirement for the
data rate the BS forms it by means of a user-specific channelization code sequence, which,
of course, is unique over the cell (or sector) and cannot be utilized to contact any other
MS. The scenario of multicode transmission arises when the only physical channel is
incapable of transmitting data at the demanded rate. Then the BS involves several parallel
physical channels to contact the same MS. These channels always operate with the same
spreading factor, but with different channelization codes, which cannot be reused by the
same BS in connections with other MSs. There is no need to repeat command messages in
all multicode channels, so control information is sent to the MS over only one of them.

As such, the downlink and uplink channelization codes are of the same type. The
Walsh functions family or OVSF tree of Figure 11.8 is used with spreading factor in the
range from 4 to 512. Some channelization sequences are not available for DPCH, being
allocated to common channels, like CPICH. For example, under the minimal spreading
factor only three code sequences may serve DPCH, providing maximal gross data rate
2.88 Mbps. Assuming channel code rate 1/2 and unavoidable overhead (control com-
mands etc.), this gross rate does not comply with 3G demands on the ‘pure’ data rate (up
to 2Mbps), which is one of the reasons why the specification stipulates high-speed
uncoded transmission, too.

When many users are operating at different rates their channelization codes should
preserve orthogonality despite the difference in values of the spreading factors, or,
which is the same, in code lengths. As one may conclude on inspecting Figure 11.8,
two Walsh functions of different lengths are orthogonal over the minimal length interval
if and only if neither of them is a descendant of the other. It follows, then, that—unlike
the uplink, where every MS, being isolated from the others by its unique scrambling law,
has the whole set of channelization codes at its exclusive disposal—the management of
the downlink channelization is much more complicated. Indeed, different MSs should
be assigned different subsets of Walsh sequences, containing no descendants of
sequences currently serving other MSs. This problem of dynamic resource coordination
is being solved at the upper layers of the network protocol stack.

11.4.10 Downlink scrambling codes

As was mentioned earlier, downlink scrambling codes secure separation of signals of
different BSs. Each scrambling sequence has in its basis a Gold sequence of length
L =2 —1=262143. Two LFSR with the feedback polynomials fj(x) = x'® + x7 4 1
and f5(x) = x'® + x!1% + x7 + x> 4+ 1 generate initial m-sequences related to each other as
required to produce a Gold ensemble (see Section 7.5.2). Although there are
218 4 1 = 262 145 Gold sequences of the length above, the specification limits the number
of those utilized to 2'3 = 8192. Two segments of length 38 400 are cut from every allowed
sequence: the initial one and the one offset by 2!7 = 131 072 chips, converted then to the
{£1} alphabet in the usual fashion (6.15). The resulting binary sequences are, respectively,
the real and imaginary parts of a downlink QPSK scrambling code.
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The specification establishes a strict hierarchy of the scrambling sequences. The set of
all scrambling codes is divided into 512 subsets, each consisting of 1 primary and 15
secondary codes. All 512 primary codes are in turn divided into 64 groups, 8 code
sequences in each one. Only one unique primary code is allocated to a specific BS. Some
physical channels are allowed to use only the primary code, while others may use either
primary or secondary codes.

11.4.11 Synchronization channel

11.4.11.1 General structure

The synchronization channel (SCH) possesses quite an important role in the network
structure, providing initial cell search and aligning the MS clock diagram with the
boundaries of frames and the slots of the received BS signal. Neither channelization
nor scrambling codes participate in forming the synchronization channel, since its signal
should be found and processed before the MS is aware of the scrambling code of a
contacted BS. Note again that BS clocks over the UMTS network are not synchronized
to each other, and the initial cell search has to be fulfilled wherever an MS switches to
another BS (e.g. in the course of handover). This proved to be one of the key factors in
designing the SCH architecture to fit a two-stage search procedure, which is potentially
capable of saving acquisition time in comparison with an ordinary serial search (see
Sections 8.2 and 8.3). As a matter of fact, the SCH is a pair of primary and secondary
synchronization channels, whose signals—primary and secondary synchronization
codes—are exploited at the first and second search stages, respectively. Both signals
occupy 256 initial chips of every slot. The primary synchronization code sequence is
identical not only over all slots but also over all BSs of the network. This makes it
impossible for an MS to capture the primary synchronization signal of a predetermined
BS; to which of them the MS got connected after the first search stage will become clear
only as a result of the second stage. After finding the primary synchronization signal, the
MS knows the boundaries of slots but not of frames. At the second stage the MS should
remove this ambiguity by testing all 15 (number of slots within a frame) possible values
of mismatch between the MS clock and the received BS signal for all possible versions of
the secondary synchronization code. To match this task the secondary synchronization
code has one frame (15 slots or 38 400 chips) period and a code structure, which is
specific for a given BS. Besides, the secondary code sequence is strictly bound to the
scrambling code group (one of 64) assigned to the base station. Thus, having completed
the second search stage, the MS recognizes the scrambling code group of the captured
BS signal, and finally, after testing eight possible primary scrambling code sequences,
finds out which of them is used by the contacted BS.

11.4.11.2 Primary synchronization code

The primary synchronization code (PSC) is defined in the specification as a 16-element
sequence a=(1,1,1,1,1,1, —1, —1,1, —=1,1, —1,1, —1, —1, 1), which is repeated 16
times with or without polarity change to produce the 256-element binary sequence:
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¢y =(a,a,a,—a, —a,a,—a,—a,a,a,a,—a,a,—2a,a,2)

Every BS directly transmits the same sequence ¢,, implementing PSC and enabling the
MS to perform the first stage of cell search. Since PSC is meant for time measurement in
the multipath environment, it should have relevant autocorrelation properties (see
Section 6.1). Despite PSC periodicity, most of its period is empty, so aperiodic ACF
sidelobe level is an adequate criterion of PSC quality. As pointed out in Example 6.10.2
(see also Figure 6.16), aperiodic ACF of the UMTS PSC is far from prominent, which is
probably a penalty for the hardware simplifications pursued by designers.

11.4.11.3 Secondary synchronization code

The secondary synchronization codes (SSC) are built on the basis of a 16-clement
sequence b replicating the sequence a above in the first eight elements and the negative
of a (i.e. —a) in the rest: b=(1,1,1,1,1,1, —1, —1, —1,1, —1,1, —1,1,1, —1). This
sequence is repeated 16 times with or without polarity change to produce the 256-
element sequence:

z=(b,b,b,—b,b,b,—b,—b,b,—b,b, —b, —b, —b, —b, —b)

The sequence z is then symbol-wise multiplied with every 16th row of a Sylvester-type
Hadamard matrix (see Section 2.7.3) of size 256 to generate 16 orthogonal 256-ary
alphabet symbols used further to generate codewords of SSC. The SSC encoding
algorithm should secure low levels of all incorrect correlations, i.e. between all 15 cyclic
replicas of any one word as well as between any time-shifts of different words. In the
UMTS specification all 64 SSC codewords are presented as a table, but an immediate
check indicates that these words are just taken from (15,3) 256-ary Reed—Solomon code.
The minimum Hamming distance of any Reed—Solomon code is greater by one than the
number of check symbols [31,33], i.e. in our case equals 13. This guarantees that there
are no more than 2 coinciding 256-ary symbols in any SSC word and any of its 14 cyclic
replicas shifted to each other by an integer number of slots. In other words, the normal-
ized periodic ACF of any SSC codeword at such shifts has a level no higher than 2/15.
The same is true for any two codewords assigned to different BSs, when only shifts by an
integer number of slots are analysed. At the same time, since the BSs of the network do
not rely on a common clock, synchronization codes transmitted by them slide against
each other and low cross-correlation values should be preserved under arbitrary time-
shifts, not only those equal to an integer number of slots. The Reed—Solomon code
distance optimality cannot secure a low level of correlations under arbitrary shifts of
SSC sequences, and this issue calls for further investigation.

As a common conclusion to Sections 11.3 and 11.4, we again stress that our sketchy
excursion into 3G systems and standards dealt only with those solutions relevant to the
context of this book, i.e. concerning practical implementation of spread spectrum and
CDMA ideas. A lot of books and papers already exist, and many more are anticipated,
explaining and clarifying various aspects of 3G and beyond, and covering all the layers
of the system protocol stack. In particular, we refer the curious reader to
[19,69,92,104,114,115,120-122] and to the 3G specifications directly.
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abnormal error, 150
ACF, see also Autocorrelation function
mainlobe, 150, 157, 168, 233, 235,
239, 262
of code sequence, 138, 154, see also
Code ACF
aperiodic, 139, 154, 158, 174, 176
periodic, 140, 158, 174, 186, 231, 236
perfect periodic, 159, 176, 185, 233
sidelobe, 150, 152, 155, 161, 168, 174,
177, 185, 192, 228, 234, 264,
271, 309
acquisition, 252, see also Search
almanac, 342
ambiguity
diagram, 57
function, 56, 60, 153
amplitude estimation, see Estimation of
amplitude
amplitude modulation law, see Real
envelope
amplitude-phase shift keying, see APSK
amplitude shift keying, see ASK
analytic signal, 25
antenna
directional, 90
diversity, see Space diversity
omnidirectional, 90
power gain, 90

antipodal pair, 16
APSK, 137, 145, 154, 203, 215
ASK, 16, 19, 78, 207
autocorrelation function

of noise, 14

of bandpass signal, 44

of signal, 43, 48, 52, 57, 102,

137, 149

sharpness, 49
average acquisition time, 259
average energy, 18
average squared correlation, 226
AWGN channel, see Gaussian channel

band-elimination filter, 79
bandpass signal, 11, 19, 24, 45, 58, 117,
136, 145, 150
bandwidth, 1, 9, 30, 50, 62, 78, 88, 117,
128, 136, 145, 150, 205, 214, 271,
317, 330
Barker code, 155
binary, 156
polyphase, 157
base station, see BS
baseband signal, 11, 18, 22, 45, 54,
104, 156
bent-sequence ensemble, 241
binary character, 171, 181
properties, 171
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binary code, 12, 155, 161, 175, 186,
281, 301
binary data transmission, 11
binary phase shift keying, see BPSK
binary sequence, 141, 155, 160, 163, 168,
176, 181, 205, 243
minimax, 159, 168, 189, 233, 268
non-antipodal, 178
bit pattern, 116, 216, 308, 315
bit stream, 29, 205, 212, 278, 288, 297, 318
BPSK, 16, 29, 34, 78,97, 117, 124, 137, 181,
204, 216, 291, 300, 308, 323, 342, 364
branch metric, 293
broadcasting channel, 360, 363
BS, 124, 232, 268, 334, 345, 358, 367

capacity, 225, 277, 300, 327
carrier frequency, 4, 16, 19, 25, 53, 58, 82,
124, 151, 211, 236, 269
CCF, 121, 139
of code sequences, 139, 231, 233,
237, 243
CDMA, 121, 204, 235
asynchronous, 121, 227, 278, 342,
354, 361
synchronous, 121, 215, 218
cdmaOne, 124, 212, 262, 278, 286, 290,
296, 318, 345, see also 1S-95
cdma2000, 105, 121, 212, 234, 278, 286,
296, 301, 318, 334, 356, 363
cellular systems, 124
central limit theorem, 8, 123
channel coding, 277
channelization code, 364, 365
channel(s)
access, 355
common, 359
dedicated, 359
physical, 359
logical, 358
paging, 348
physical, 358
pilot, 347
synchronization, 347
traffic, 349, 353
transport, 358

chip, 34, 88, 136, 154, 181, 205, 227, 252,
262,271, 308, 316, 323, 343, 351, 358
complex amplitude, 136
chi-square law, 85
Chu code, 179
ciphertext, 88
clock interval, 164
cluster, 125
code
block, 278
convolutional, 278, 286, 348, 355, 358
free distance of, 291
systematic, 289, 297
rate of, 287
detection capability, 279
distance, 280, 290, 367
error-detecting, 281
Hamming, 285, 342, 344
linear, 281
Reed-Solomon, 367
systematic, 283
tree, 278, 286
turbo, 296, 357
code ACF, 138, 154, 160
aperiodic, 139, 155, 174
periodic, 140, 158, 174
code division multiple access, see CDMA
code phase, 254
code polynomial, 281
code sequence, 34, 136, 145, 154, 160, 215,
224,264, 310
code tracking, 252, 265
codestream, 278, 350
codeword, 278
coding gain, 29
asymptotic, 29
of convolutional code, 291
of orthogonal coding, 29
coherence bandwidth, 101, 319, 324
coherence time, 102
combining, 98, 105
equal weight, 99
maximal ratio, 99, 105, 325
selection of a maximum SNR
branch, 99
common packet channel, see CPCH
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complementary error function, 13, 18,
97, 328
complex envelope, 24, 44, 48, 53, 55, 92,
104, 136, 151, 208, 215, 224, 269,
320, 324, 329, 333
of ACF, 44
constant component, 85, 160, 178, 190,
231, 238
constraint length, 287, 296, 301,
348, 358
continuous wave, see CW
conventional receiver, 117, 122, 223,
307, 312, 315
convolution, 186, 288
integral, 23, 45, 47, 270
correlation, 10, 15, 34, 39, 46, 116, 193,
204, 223, 227, 231, 253, 263, 269,
308, 316
coefficient, 13, 27, 41, 62, 216, 224, 308
decision rule, 10, 39, 55
modulus, 27, 46, 53, 259
peak, 232, 235, 238, 240, 243
spread, 50, 57, 60, 85, 102, 150, 187
correlator(s), 15, 44, 47, 53, 83, 105, 205,
228, 253, 267, 309, 324
bank of, 47, 55, 252, 266, 354
cosine theorem, 14, 21, 26, 92, 127
Costas array, 194
CPCH, 360, 364
Cramer-Rao bound, 40, 49, 54
CRC, 285, 286, 348, 358
cross correlation function, see CCF
crossover probability, 279, 292
CW, 24, 54, 81, 159, 204, 208
cyclic convolution, 186, 321
cyclic redundancy code, see CRC

datastream, 204, 214, 252, 317, 323,
352, 359, 364
DBPSK, see Differential BPSK
decimation, 194, 236, 242, 349, 362
index, 194, 236, 239, 362
decoding
hard, 279, 302,
soft, 278, 292, 295
decorrelating algorithm, 309, 316

dedicated physical
control channel, see DPCCH
data channel, see DPDCH
delay spread, 92, 98, 101, 214, 228,
232, 318
delay-lock loop, see DLL
delta function
Dirac, 14, 267, 272
Kronecker, 20
demodulator, 43, 205, 208, 214
despreading, 206, 210, 212, 252, 265,
324, 352
detection probability, 86, 121, 255, 263
deterministic signals, 11, 26
DFT, 186, 236, 321, 322
dichotomy, 264
differential BPSK, 63
dimension of signal space, 18, 28, 31, 88,
117, 145, 218
direct sequence spreading, see DS
spreading
discrete Fourier transform, see DFT
discrete spread spectrum signal, 136, 145
aperiodic (pulse), 136, 155, 188
periodic, 136, 142, 159, 168, 185, 268
diversity, 98
antenna (space), 100
branch, 98, 103, 326, 332, 357
frequency, 101
gain, 98, 328, 333
multipath, 98, 102, 352
polarization, 102
receive, 100, 326, 330
time, 102
transmit, 100, 326, 333
division with remainder, 282
divisor, 282
DLL, 266, 270, 352
discriminator, 267
coherent, 269
curve, 268
early-late, 267
noncoherent, 269
Doppler spread, 102
downlink, 116, 121, 124, 177, 214, 315,
327, 333, 345, 358, 363
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DPCCH, 359, 364

DPDCH, 359, 364

DS CDMA, 214, 227, 307, 310, 318,
333, 358

DS spreading, 205, 207, 214, 318, 342,
348, 352, 358, 362

dwell time, 255, 260, 263

eavesdropper, see Interceptor
electromagnetic compatibility, 88, 128
electronic countermeasures, 80
elementary pulse, 34, 136
emanating system, 88
EMC, see Electromagnetic compatibility
enemy cryptanalyst, 88
energy detector, see Radiometer
energy parameter, 38
ephemeris, 342
equalizer (equalizing), 51, 98, 214, 282,
319, 323
zero-forcing, 185, 322, 325
error burst, 302, 348
error correction, 279, 292, 348, 353
error detection, 279, 284
error function, 30
error probability, 12, 18, 22, 29, 78, 90, 96,
123, 216, 278, 291, 301, 327, 330
of coherent reception of M orthogonal
signals, 22
symbol, see Crossover probability
error signal, 266, 276
error vector, 284
estimate, 17, 37, 46, 54, 83, 252, 266,
308, 315, 322, 332
efficient, 40
asymptotically, 40
maximal likelihood (ML), 38, 42, 46,
54, 308
unbiased, 40
asymptotically, 40
estimation
accuracy (precision), 39, 48, 57
of amplitude, 42
of carrier frequency, 53
of phase, 43
of time delay, 46

simultaneous of time delay and
frequency, 55
Euclidean distance, 8, 38, 116, 278

fading, 59, 302, 327, 348
fast, 95, 329
flat, 59, 95, 104, 319, 324
frequency-selective, 59, 98, 102, 319
large scale, 91
long term, see Large scale fading
multipath, 90, 98
Rayleigh, 94, 328
short term, see Small-scale fading
slow, 95, 329
small-scale, 93
false alarm probability, 85, 255, 263
FDMA, 117, 129, 354
FH spreading, 212
fast, 212
slow, 212
field, 162
finite, 162, 170, 184
extension, 184, 237
prime, 162
operations, 162
filter
coefficients, 186
finite impulse response, see FIR filter
inverse, 187
response, 45, 60, 102, 149, 160, 191
sidelobe suppression, see SLSF
FIR filter, 186, 288, 319
forward link, 345
Fourier transform(s), 1, 23, 50, 54, 122,
152, 186
Frank code, 180
free-space propagation, 90
frequency tracking, 252
frequency deviation, 4, 151
frequency division multiple access,
see FDMA
frequency hopping spreading, see FH
spreading
frequency-offset binary m-sequences, 235
frequency resolution, 60, 62
frequency-shift coding, 33
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frequency shift keying, see FSK
frequency spread, 54, 57

Friis formula, 90

FSK, 16, 33, 117, 137, 142, 192, 212

Gabor uncertainty principle, 3
Galois field, see Finite field
Gaussian

channel, 2, 8, 301, 328

noise, 8, 150, 259, 278, 331

process, 13, 85, 95, 273
generator polynomial, 283, 288
Global Positioning System, see GPS
GLONASS, 236, 344
GNSS, 345
Gold sequence, 169, 236, 240, 342, 362, 365
GPS, 5, 55, 87, 239, 252, 262, 340, 346

C/A-code, 341

control segment, 341

differential positioning, 343

P-code, 341

selective availability, 344

space segment, 340

user segment, 341
group signal, 115, 214, 220, 307
GSM, 3,119

Hadamard matrix, 34, 217, 221, 314, 347,
361, 367

Hamming
distance, 280, 290, 296, 367
weight, 280, 290

handover, 124, 262, 346, 352, 358, 366
soft, 353, 356

Hilbert transform, 23

imbalance, see Constant component
initial phase, 26, 43, 53, 55
random, 26, 48, 53
inner product, 10
integration-reset, 205
intended system, 82
inter-cell MAI, 126
interceptor, 83
interference cancellation, 315
interleaving, 297, 302, 355, 359

intersymbol interference, see ISI

inverse element, 162

ISI, 59, 95, 98, 104, 319, 321

1S-95, 6, 64, 105, 121, 124, 169, 212, 234,
262, 345, 357, see also cdmaOne

IS-136, 119

Jammer, 77

barrage, 80

narrow band, 78
jamming immunity, 82

Kamaletdinov ensemble, 241
Kasami set, 169, 239, 243
Kronecker power, 221
Kronecker product, 35

Legendre
sequence, 172, 176, 178, 234, 268
symbol, 172

length of discrete signal (code), 136, 144,
205, 217, 228, 262, 279, 285

LFM signal, 4, 65, 81, 151, 154

LFSR, 163, 184, 237, 240, 346, 362, 365

linear feedback shift register, see LFSR

linear recurrent sequence, 163, 192, 363

memory of, 163

linearly frequency-modulated signal,
see LFM signal

line of sight, see LOS

logarithm (in finite field), 171

long code, 64, 346, 349, 354, 357

LOS, 90, 94

low probability of detection, 82

MAI, 122, 128, 223, 228, 234, 278, 307,
311, 315, 323, 346, 350, 353

MAP, 299

Marcum Q-function, 260

matched code, 265

matched filter(s), 15, 44, 47, 53, 78, 81,
102, 150, 156, 168, 186, 191, 252,
259, 266, 311, 315, 331

bank of, 53
matrix inversion lemma, 313
maximal-length sequence, see m-sequence
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maximal likelihood estimate, see ML
estimate

maximal likelihood rule, see ML rule

maximum a posteriori probability,
see MAP

MC modulation, 316

MC-CDMA, 322

MC-DS-CDMA, 318, 357

MIMO, 326

minimax criterion, 154, 232

minimax ensemble, 232, 243, 323

minimax sequence, 161, 169,
175, 265

minimum distance, 18, 22, 28, 46, 215,
222,290, 301

rule, 9, 11, 38, 42, 116

minimum mean-square error, see MMSE

detector

mismatched processing (filtering), 52, 152,

185, 311, 325
ML estimator, 48, 55

ML rule, 8, 38, 40, 116, 223, 252, 265, 278,

308, 331
MMSE detector, 311, 313
blind, 315
mobile station, see MS
MS, 124, 232, 346, 352, 357, 361,
363, 367
m-sequence, 165, 174, 179, 234, 268
balance property, 165, 182
binary, 167, 179, 205, 234, 236, 239
pair property, 182
p-ary, 165, 181, 242
shift-and-add property, 166
multicarrier modulation, see MC
modulation
multicode transmission, 356, 359, 365
multipath interference, 98, 229, 234
multipath propagation, 59, 91, 98, 104,
234, 321, 328
multiple access, 116, 121, 129
interference, see MAI
orthogonal, 117, 120, 128
multiple-input multiple output, see
MIMO
multiplicative interference, 89

multiuser
detection (receiver), 116, 215, 222,
308, 325
asynchronous, 316
system, 116

near-far problem, 122, 126, 350
negative element, 162, 281

node metric, 293

noise bandwidth, 272
noncoherent reception, 11, 26, 28
non-energy parameter, 39, 41, 46
nuisance parameter, 46, 53

observation, 7, 17, 29, 38, 47, 57, 83,
150, 205, 216, 254, 266, 270, 27
285, 292, 299, 308, 315, 331
correlation matrix, 312, 317
interval, 41, 83, 116, 307, 317
OFDM, 320, 323
cyclic prefix, 321
symbol, 320, 323
Okumura-Hata model, 90
optimal signal pair, 15
optimality criterion, 40
0-QPSK, 356, 357
orthogonal frequency division
multiplexing, see OFDM

116,
8,

orthogonal modulation (signalling), 22,

33, 36, 353, 357
orthogonal pair, 16
orthogonal signal sets, 31, 222, 311
orthogonal variable spreading factor
codes, see OVSF codes
orthonormal vectors, 21, 218, 325

oversaturated CDMA, 218, 226, 308,

314, 333
OVSF codes, 361

packing, 11
spherical, 18
volume, 18

paging channel, 348

PAM, 19

parameter estimation (measuring), 37, 39,

41, 61, 78, 82, 265
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Parseval theorem, 23, 33, 50, 78, 121
PCG, 351, 355
PDF, 13, 17, 50, 85, 94, 126
Gaussian, 13, 85, 132
lognormal, 91, 94, 109
Rayleigh, 84, 112, 259, 273, 329, 336
Rician, 259, 260
peak-factor, 33, 155, 181, 185, 323, 331, 333
peak power, 33, 51, 60, 79, 103, 119,
150, 156, 181
phase estimation, see estimation of phase
phase modulation, 19, 24
phase shift keying, see PSK
phasor diagram, 92
pilot signal, 100, 170, 347, 353,
357, 360
plain signal, 3, 52, 57, 81, 103, 135, 206
polynomial
irreducible, 166, 184, 286
non-primitive, 184
primitive, 166, 174, 199, 240, 242,
285, 346
polyphase code (sequence), 157, 168, 179,
217, 233, 236, 337
power control, 123, 126, 130, 314, 350,
355, 359, 361
bit, 348, 350, 352
group, see PCG
probability density function, see PDF
probability of correct acqusistion, 254,
256, 260
processing gain, 81, 86, 89, 123, 145,
150, 152, 205, 227, 270, 317
of discrete signal, 145, 229
propagation difference, 92, 101
PSK, 20, 43, 63, 117, 121, 137, 155, 175,
180, 207, 216, 224, 322, 332
Barker code, 155, see also Polyphase
Barker code
signature(s), 225, 231
pseudo-range, 340
pull-in, 252, 267
pulse amplitude modulation, see PAM
pulse response, 23, 44, 47, 270, 288, 321
puncturing, 288, 302, 350
Pythagorean theorem, 9, 24

QAM, 20, 41, 207, 322, 331, 333
QPSK, 63, 109, 123, 137, 180, 318, 322,
333, 352, 356, 359, 364

offset, see O-QPSK
quadrature amplitude modulation, see QAM
quadrature components, 19
quadrature phase shift keying, see QPSK
quantization error, 47

radar array, 192
radiometer, 83
RAKE, 5, 105, 121, 233, 352
fingers, 105, 352
rapid acquisition sequence, 264
Rayleigh channel, 95, 98, 314
real envelope, 19, 23, 44, 54, 151,
259, 270, 323
of ACF, 44
reference signal, 38, 41, 47, 55, 92, 102,
105, 209, 214, 231, 252, 266, 271,
309, 315, 334, 347, 359
remainder, 282
reverse link, 347, 354, 360

sampling, 9, 53
period (interval), 9, 252, 321
theorem, 18, 300
scalar product, see Inner product
scrambling, 170, 239, 349, 354, 362
code, 362, 365
Schwarz’s inequality, 99
search, 252, 262, 342, 358, 366
average number of steps, 254, 258
cycle, 255
multiple dwell, 263
parallel, 263
serial, 253, 262, 264, 366
seria-parallel, 263
step, 255
two-dwell, 262
sequential analysis, 262
shadowing, 99
Shannon’s
bound, 2, 277, 301
capacity, 225, 327, 335
theorem, 277
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short codes, 346
Sidelnikov bound, 232, 238
sidereal period, 341, 344
signal duration, 1, 9, 31, 44, 49, 54, 58, 62,
80, 83, 92, 135, 149
signal(s)
coherent, 28
constellation, 18
continuous, 136
discrete, 136, 145, 168, 205, 271, 282
aperiodic, 136, 155, 187
periodic, 136, 138, 142, 159, 168,
185, 268
energy, 9, 10, 15, 27, 38, 42, 51, 78,
83, 89, 100, 117, 135, 155, 181,
271, 292
equidistant, 21, 29
orthogonal, 16, 22, 27, 30, 79, 87,
117, 354
resemblance, 10, 26, 39, 46, 50, 54, 58, 138
resolution, 58, 62, 102, 137, 159, 149
simplex, 21
structure secrecy, 87
vector length, 15
signal-to-interference ratio, see SIR
signal-to-noise ratio, see SNR
signature(s), 120, 125, 204, 212, 214, 227,
231, 307, 317, 322, 333, 362
correlation matrix, 308
ensemble (set), 203, 217, 220, 229, 234,
312, 324,
matrix, 226, 310, 312, 316
orthogonal, 217, 221, 224, 227, 308,
311, 323
pseudorandom, 231
random, 229
Welch-bound, 223, 227, 312
time-offset, 232
Singer code, 190
single-user receiver, see Conventional
receiver
SINR, 313
SIR, 78, 123, 127, 226, 278
floor, 123, 128, 227
SLSF, 186, 192
energy loss, 188

small Fermat theorem, 171
SNR, 15, 18, 29, 41, 49, 54, 59, 62, 79, 86,
96, 99, 104, 149, 152, 186, 216, 225,
259, 292, 296, 301, 309, 325, 327, 332
in the loop, 272
loss, 188, 190, 311, 325
sonar array, 194
space-time code (coding), 100, 327
Alamouti, 331
repetition, 329
time-switched, 330
spectral efficiency, 2, 30, 319, 333
speed of light, 232, 340
spread spectrum
orthogonal coding, 33
signal(s), 3, 7, 32, 36, 51, 57, 62, 81, 86,
87, 104, 120, 135, 145, 217, 251,
264, 266
for time measuring, 150
system, 3, 137, 210, 251, 278, 307, 343
spreading factor, 205, 215, 217, 278, 316,
323, 352, 356, 358, 361, 365
square-law amplitude detector, 83
stationary wave, 92
survivor, 293
susceptible system, 88
Sylvester rule, 35, 361
synchronization, 37, 118, 121, 149, 251,
269, 347, 351
channel, 46, 159, 169, 177, 334, 347,
364, 366
codes, 176, 265, 366
syndrome, 284
system time, 340

tau-dither loop, 270

TDMA, 3, 118, 124, 129, 330

ternary sequence, 163, 167, 181, 185

with perfect periodic ACF, 181, 185

thermal noise, 8, 78, 83, 87, 123, 128,
278, 309, 313

throughput, 340

time compression, 51, 60, 103, 150, 153

time division multiple access, see TDMA

time resolution, 58, 62, 102, 149, 154, 177,
191, 193
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time-frequency product, 3, 31, 51, 60,
80, 120, 145, 205, 317

time-frequency resolution, 60, 62, 153

time-frequency resource, 30, 36, 115,
119, 123, 125, 128, 145, 300

time-shift coding, 31

total squared correlation, see TSC

traffic channel, 349, 353

transfer function, 23, 59, 78, 83, 95, 98,
187, 271, 288, 298, 321

transition probability, 8, 292, 299

trellis, 289, 299

diagram, 289, 295, 299
TSC, 224

UMTS, 6, 36, 105, 121, 176, 212, 239, 265,
278, 286, 296, 301, 334, 356

uncertainty region, 252, 265

union bound, 17, 30

uplink, 31, 119, 124

variance, 13, 84, 89, 99, 187, 224, 312,
329, 333
of error, 40, 49, 272
of estimate, 40, 43, 48
VCO, 267
Viterbi algorithm, 286, 292, 352
vocoder, 349, 353
voice activity factor, 127, 353, 355
voltage controlled oscillator,
see VCO

Walsh functions (sequences), 35, 120, 217,
323, 346, 352, 361, 365

wavelength, 90, 94, 100, 326

weak orthogonality, 217

Welch bound, 224, 228, 234, 236

Welch-bound sequences, 223, 226, 336

Woodward formula, 50, 273

z-transform, 281, 288





